TRANSPORTATION PROJECT REPORT

DRAFT DESIGN REPORT / DRAFT ENVIRONMENTAL IMPACT STATEMENT / DRAFT 4(f) EVALUATION

APPENDIX B10

Noise Analysis Report

November 2016

PIN 5470.22

NYS Route 198 (Scajaquada Expressway Corridor)
Grant Street Interchange to Parkside Avenue Intersection
City of Buffalo
Erie County

New York State Department of Transportation

Reconstruction of NYS Route 198 (Scajaquada) from the Grant Street Interchange to the Parkside Avenue Intersection

TRAFFIC NOISE ANALYSIS REPORT

CITY OF BUFFALO, ERIE COUNTY, NEW YORK P.I.N. 5470.22 / October 2016

Table of Contents

Section	on	Page
1.0 1.1	INTRODUCTION	
3.0	NOISE CHARACTERISTICS	3
4.0	METHODOLOGY OVERVIEW	5
5.0	RECEIVER SITES	7
6.0 6.1 6.2	MODEL VALIDATION	11
7. 7. 7.2 7.2	.1.1 Traffic Volumes and Classifications	14 14 15 15 15
8.0 8.1 8.2 8.3 8.4 8.5	NOISE ABATEMENT TRAFFIC MANAGEMENT/HIGHWAY DESIGN	21 21 23
9.0	CONSTRUCTION NOISE	27
10.0	STATEMENT OF LIKELIHOOD	28
11.0	COORDINATION WITH LOCAL OFFICIALS	29
12 0	REFERENCES	30

List of Tables

		Page
Table 3-1	Common Noise Levels	4
Table 5-1	Noise Abatement Criteria (NAC)	10
Table 6-1	Field and Validation Model Noise Levels (Leg)	12
Table 7-1	Summary of Analysis Areas – Traffic Noise Levels (Leq)	
Table 7-2	Analysis Area G – Detailed Traffic Noise Levels	
Table 7-3	Analysis Area H – Detailed Traffic Noise Levels	17
Table 7-4	Analysis Area L – Detailed Traffic Noise Levels	18
Table 7-5	Analysis Area M – Detailed Traffic Noise Levels	
Table 7-6	Analysis Area N – Detailed Traffic Noise Levels	19
Table 7-7	Analysis Area O – Detailed Traffic Noise Levels	19
Table 8-1	Evaluated Noise Barriers	25
Table 8-2	Noise Barrier Feasibility And Reasonableness	25
Table 11-1	Information for Local Officials	29
	<u>List of Figures</u>	
		After Page
Figure 1	Project Location Map	Attachment A
Figure 1B	Project Location Map: Corridor Extents	Attachment A
Figure 2	Noise Receiver Locations	
Figure NB1	Evaluated Noise Barriers (Area G and Area H)	
Figure NB2	Evaluated Noise Barriers (Areas L, M, N and O)	Attachment A

List of Attachments

Attachment A Project Location Map, Noise Receiver Locations, Barrier Figures Attachment B Field Noise Monitoring Logs
Attachment C TNM Model Output

1.0 INTRODUCTION

The following Noise Analysis Report has been prepared by Bergmann Associates, P.C. (Bergmann) for the Reconstruction of NYS Route 198, from the Grant Street interchange to the Parkside Avenue intersection within the City of Buffalo, Erie County, New York (PIN 5470.22). This report was prepared for the New York State Department of Transportation (NYSDOT) under contract D015557 in technical support of the proposed roadway reconstruction project. The noise study area is from I-190 to NYS Route 33, and additional outline intersection areas, see **Figure 1** in **Attachment A** for the Project Location Map. Please refer to Sections 1.1 and 1.2 of the Design Report / Environmental Impact Statement for more information regarding the project description, and refer to Section 3.2 of the Design Report / Environmental Impact Statement for more information regarding the project alternatives.

1.1 Scope and Purpose

The purpose of this noise study is to determine potential future traffic noise impacts for the Build Alternative. This report includes a summary of the noise analysis, impact determination, abatement evaluation and conclusions. Procedures for this study conform to the requirements developed by the Federal Highway Administration (FHWA) as presented in Chapter I of Title 23, Code of Federal Regulations, Part 772 (23 CFR 772), Procedures for Abatement of Highway Traffic Noise and Construction Noise, and the New York State Department of Transportation (NYSDOT) Noise Analysis Policy, contained in the NYSDOT Environmental Manual (TEM). The procedures include the following:

- A. Review existing activities and assign Activity Categories.
- B. Identify noise receivers and perform noise measurements to validate the noise model and determine the existing worst noise hour.
- C. Model existing traffic noise levels and future traffic noise levels in the design year for each build alternative.
- D. Determine locations where the build alternative(s) would cause a traffic noise impact.
- E. Evaluate noise abatement measures for areas where future traffic noise impacts are identified.
- F. Recommend abatement measures, if they are feasible and reasonable, for the impacted areas.
- G. Coordinate with local officials.

H. Discuss the temporary construction noise expected from the project and the temporary abatement measures that could be implemented to minimize or eliminate adverse construction noise impacts to the community.

23 CFR 772 requires that noise analyses be performed for Type I projects. A Type I project as defined in 23 CFR 772.5 includes the following: the construction of a highway on new location; the physical alteration of an existing highway where there is a substantial horizontal and/or vertical alteration; the addition of a through travel lane; the addition of an auxiliary lane; the addition or relocation of interchange lanes or ramps added to a quadrant to complete an existing partial interchange; restriping existing pavement for the purpose of adding a through-lane or an auxiliary lane; and the addition of a new or substantial alteration of a weight station, rest stop, ride-share lot or toll plaza. This project consists of a substantial horizontal alteration that halves the distance between the traffic noise source and the closest receptor (Delaware Park) between the existing condition to the future build condition. Therefore, this project is considered a Type I project and a noise study is required.

3.0 NOISE CHARACTERISTICS

Three physical characteristics of noise have been identified as being important to the determination of noise acceptance:

- The Intensity,
- The Frequency, and
- The Time-Varying Nature of the Noise.

Intensity is a measure of the magnitude or energy of the sound and is directly related to pressure level. The human ear is capable of sensing a wide range of pressure levels, and consequently, pressure levels are expressed in terms of a logarithmic scale with units called decibels (dB). As the intensity of a noise increases, it is judged to be more annoying or less acceptable.

Frequency is a measure of the total qualities of sound. People are most sensitive to sounds in the middle to high frequencies; therefore, higher frequencies tend to cause more annoyance. This sensitivity led to the use of the A-weighted sound level, which provides a single number measure that weights different frequencies of the frequency spectrum in a manner similar to the sensitivity of the human ear. Thus, the A-weighted sound level in decibels (dBA) provides a simple measure of intensity and frequency that correlates well with human hearing. Common noise levels are shown in **Table 3-1**.

Environmental noise is rarely constant with time. It is necessary to use a method of measure that will account for this time-varying nature of noise. The equivalent sound pressure level (Leq) is defined as the continuous steady sound level that would have the same total A-weighted sound energy as the real fluctuating sound measured over the same period of time. Leq is typically used for highway noise analysis. This unit of measure, therefore, has been chosen for use in this study.

Table 3-1 COMMON NOISE LEVELS

Common Outdoor Noise Levels	-	Noise L (dB		Common Indoor Noise Levels
	110		 110	Rock Band
Jet Flyover at 1000 ft				
	100		 100	
Gas Lawnmower at 3 ft				Inside Subway Train
	90		 90	Food Blender at 3 ft
Diesel Truck at 50 ft				Garbage Disposal at 3 ft
Noisy Urban (daytime)	80		 80	Shouting at 3 ft
Gas Lawnmower at 100 ft	70		 70	Vacuum Cleaner at 3 ft
				Normal Speech at 3 ft
Heavy Traffic at 300 ft	60		 60	
				Large Business Office
Quiet Urban (daytime)	50		 50	Dishwasher Next Room
Quiet Urban (nighttime)	40		 40	Small Theater (background)
Quiet Suburban (nighttime)	00		0.0	Library
	30		 30	Bedroom at Night
Out at Dural (vialettine a)	20		20	Concert Hall (background)
Quiet Rural (nighttime)	20		 20	Broadcast and Recording Studio
	10		10	bioadcast and recording studio
	10		 10	Threshold of Hearing
	0		 0	miesnoid of Healing

Source: NYSDOT Document - Field Measurement of Existing Noise Levels: May 1986.

4.0 METHODOLOGY OVERVIEW

The methods used in this analysis are in accordance with the provisions and procedures of the policies stated in the federal noise regulations (23 CFR 772), and the NYSDOT Noise Analysis Policy. The following procedure was used for this study.

- 1. Existing developed land uses were determined for the project area, and Activity Categories corresponding to each land use were assigned in accordance with 23 CFR 772.
- 2. Appropriate noise measurement receiver sites were chosen for analysis in the project study area. Using a sound meter that meets ANSI Standards for Type 2 meters, existing noise levels were measured in accordance with the NYSDOT's manual, Field Measurement of Existing Noise Levels. Two measurements were taken at each site. The field noise measurements at each receiver consisted of one field measurement during a peak hour and one field measurement during an off peak hour. Vehicle classification studies performed for the corridor in 2008 and 2016 indicate that, in many cases, the heavy vehicle classification percentages are more than twice as high during the AM peak hour as the PM Therefore, since heavy vehicles are substantially louder than automobiles, the peak hours that were measured ranged from 7-9:00 am during Traffic volumes, speeds, vehicle classifications, weather the weekdays. conditions, area topography and particular incidents that may affect the measurement were recorded at each site concurrent with the noise measurements.
- 3. Using the collected data, computer models reflecting the field conditions were then created for the measurements taken at each site during the worst noise hour with respect to either vehicle counts, classifications, or noise levels (if substantial variations were identified). The FHWA Traffic Noise Model 2.5 (TNM) computer program was used for this modeling. The TNM noise levels predicted by the models were then compared to the measured noise levels in the field to validate the models and their ability to predict noise levels at each site. TNM inputs for each receiver site included the field-measured traffic volumes, vehicle distributions, speeds, and roadway geometrics. Field measured traffic volumes and speeds were entered into the modeled streets that were identified as audible from the chosen receiver locations. In accordance with NYSDOT Noise Policy, the TNM-modeled noise levels are considered accurate if they are within plus or minus 3 dBA of the field measured noise levels (ref. FHWA TNM Users Manual). The results of these model validations are described in Section 6.0.
- 4. The validated model (described in Step 3) was then used to predict existing traffic noise levels and design year (2040) traffic noise levels produced by the Build Alternative. Future traffic volumes and speeds were entered into the modeled streets that were identified as audible from the chosen receiver locations.

- 5. The noise levels predicted using the design year (2040) traffic and speeds were compared to the FHWA Noise Abatement Criteria (NAC). Receivers at which predicted noise levels approach (within 1 dBA) or exceed the NAC level of 67 dBA were identified as impacted, requiring the evaluation of noise abatement measures. In accordance with the NYSDOT Noise Policy, the predicted future noise levels were also compared to the existing noise levels to determine the net increase in noise levels. Receivers at which the predicted future traffic noise levels exceed the existing levels by 6 dBA or more are also considered impacted, requiring the evaluation of noise abatement measures.
- 6. For the areas meeting the criteria described in Number 5 above, noise abatement measures were considered. Abatement measures are recommended for impacted sites when measures are found to be both feasible and reasonable.

5.0 RECEIVER SITES

Activity Categories were assigned to the areas located within the study area. A review of local planning documents for the City of Buffalo was performed as part of the existing conditions analysis for the EIS. This existing conditions analysis, in conjunction with a site visit, was used to identify existing activities and developed lands, and to locate undeveloped lands for which development is permitted. If present, residences, schools, and places of worship were also identified. In determining noise impacts, primary consideration is given to exterior areas.

A total of 20 noise-sensitive receiver areas as defined by 23 CFR 772 were identified and approximate locations for each are shown on **Figure 2** in **Attachment A**. Twelve (12) receiver locations were selected for the project corridor. In addition, eight receivers were selected at locations outside of the project corridor along NYS Route 198, and at outlying areas along local roadways that are predicted to see an increase in traffic volume from existing conditions to the design year. A description of each receiver location and its noise category as defined by 23 CFR 772 follows:

- Receiver Location A -- Representative of Buffalo State College with dorms and active sports fields. Receiver located in the athletics area with exterior areas of frequent human use Activity Categories B and C (school, residential, and active sports area).
- Receiver Location B -- Representative of the western portion of the linear park with walking/bike trails, playgrounds, residential areas, a church, and a school. Receiver is located in a representative green space within the linear park. Activity Categories B and C (residential, church, school, park, playground, active sports area, and recreation area).
- Receiver Location C -- Representative of McKinley High School and eastern portion of the linear park with walking/bike trails and playgrounds. Receiver is located in a representative green space within the linear park. Activity Category C (school, park, and recreation area).
- Receiver Location D -- Representative of Buffalo State College Campus House, nearby library, and academic areas. Receiver located in a grassy area representative of exterior use areas Activity Category C (school and library).
- Receiver Location E -- Representative of a portion of the park with walking/bike trails, oriental garden, and the Buffalo and Erie County Historical Society (BECHS) green space. Receiver is located in a representative green space behind the BECHS. Activity Category C (library, park, picnic area, and recreation area).
- Receiver Location F -- Representative of Albright-Knox Art Gallery, Rose Garden/park with walking/bike trails/playgrounds, and Marcy Casino with

- associated recreation, green space, and picnic areas. Outdoor special events are often held here. Receiver is located in a representative green space adjacent to the art gallery. Activity Category C (picnic area and recreation area).
- Receiver Location G -- Representative of park with walking/bike trails and western Hoyt Lake with associated recreation and green space. Receiver is located in a representative green space along the walking/bike trail. Activity Category C (park, picnic area, playgrounds, and recreation area).
- Receiver Location H -- Representative of a portion of Delaware Park with walking/bike trails and tennis courts with residential across Nottingham Terrace. Receiver is located in a representative green space within the park. Activity Categories B and C (residential, park, active sports area, and recreation area).
- Receiver Location I -- Representative of park with walking/bike trails and eastern Hoyt Lake with associated recreation and green space. Receiver is located in a representative green space along the walking/bike trail. Activity Category C (park and recreation area).
- Receiver Location J -- Representative of a portion of Delaware Park with walking/bike trails, soccer, golf and tennis courts. Receiver is located in a representative green space within the park. Activity Category C (park, picnic area, active sports area, and recreation area).
- Receiver Location K -- Representative of a portion of Forest Lawn Cemetery with walking/bike trails. Receiver is located in a representative green space within the cemetery. Activity Category C (cemetery and recreation area).
- Receiver Location L -- Representative of approximately 27 residential structures with frontage on the south side of NYS Route 198 west of Main Street, Buffalo Municipal Housing Authority (BMHA) housing, college dormitories, Canisius College, and Medaille College. Receiver is located at a representative property in the front yard. Activity Categories B and C (residential, and school).
- Receiver Location M -- Representative of approximately 18 residential structures with frontage on the north side of NYS Route 198 west of Main Street. Receiver is located at a representative property in the front yard. Within the Location M area is the Sisters of Charity Hospital Office Medical Facility, in which there are no exterior areas of frequent human use Activity Categories B (residential area) and D (medical facilities with no outdoor areas of frequent human use)
- Receiver Location N -- Representative of approximately 25 residential structures with frontage on the south side of NYS Route 198. Receiver is located at a representative property in the front yard. Activity Category B (residential area).

- Receiver Location O -- Representative of approximately 30 residential structures with frontage on the north side of NYS Route 198. Receiver is located at a representative property in the front yard. Activity Category B (residential area).
- Outlying Receiver Locations P1 P5 The following five receivers are located at areas near roadways that are predicted to have an increase in traffic volume from existing conditions to the design year. Physical changes to the roadways are not expected in these outlying areas; however, physical changes to NYS Route 198 are expected to influence the volumes along these outlying roadways.
 - Receiver Location P1 -- Representative of residential homes in the area of the Austin Street, Military Road, and the Grant Street Intersection Activity Category B (residential area).
 - Receiver Location P2 -- Representative of Nichols School on Amherst Street between Nottingham Terrace and Colvin Avenue - Activity Category C (school and active sports area).
 - Receiver Location P3 -- Representative of residential homes on Middlesex Road between Elmwood Avenue and Lincoln Parkway -Activity Category B (residential area).
 - Receiver Location P4 -- Representative of residential homes on Middlesex Rd. between Lincoln Parkway and Delaware Avenue Activity Category B (residential area).
 - Receiver Location P5 -- Representative of residential homes on Forest Ave. between Lincoln Parkway and Elmwood Avenue Activity Category B (residential area).

The figures in **Attachment A** and the Field Noise Monitoring Logs in **Attachment B** show the location of the sites evaluated within the study area.

The FHWA NAC are listed in **Table 5-1**. These criteria indicate the noise levels for each activity category at which noise impacts occur and consideration of abatement measures is required.

TABLE 5-1 NOISE ABATEMENT CRITERIA (NAC) HOURLY A-WEIGHTED SOUND LEVEL - DECIBELS (dBA)

Activity Category	Leq (h) (dBA)	Description of Land Use Category
А	57 (Exterior)	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.
B¹	67 (Exterior)	Residential.
C ¹	67 (Exterior)	Active sport areas, amphitheatres, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.
D	52 (Interior)	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.
E ¹	72 (Exterior)	Hotels, motels, offices, restaurants/bars and other developed lands, properties or activities not included in A-D or F.
F		Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.
G		Undeveloped lands that are not permitted.

Leq (h): Equivalent sound pressure level, see Section 3.0 for discussion.

¹Includes undeveloped lands permitted for this Activity Category.

6.0 MODEL VALIDATION

The NYSDOT Noise Policy requires validation of the TNM noise model for each receiver site by using field measurements of noise, traffic volumes, speeds, and vehicle types. The site-specific volumes, vehicle types, speeds, and geometry are entered into the TNM model to determine the model-predicted noise level, for comparison to the field-measured noise levels. In accordance with FHWA noise regulations and NYSDOT Noise Policy, if the TNM-modeled noise levels are within plus or minus 3 dBA of the field measured noise levels, the model is considered valid.

6.1 Field Measurements

For noise model validation purposes, existing noise measurements were conducted in December 2011 and February/March 2012 at the 20 receiver sites. The receiver locations are shown on **Figure 2** in **Attachment A** and on the Field Noise Monitoring Logs in **Attachment B**.

The weather was clear with temperatures ranging from 20 to 42 degrees F. Wind was less than 16 kph (10 mph) and humidity was between 57 and 89 percent.

Noise levels at each receiver were measured using a Casella CEL-633C Noise Analyzer. To accurately measure the noise level representative of each site, two measurements of at least 15-25 minutes were taken at each site. The field noise measurements at each receiver consisted of one field measurement during the weekday AM peak hours (7-9:00 am) and one field measurement during an off peak hour. Noise levels recorded by the noise analyzer included the equivalent noise level (Leq). The field noise monitoring logs can be found in **Attachment B**. The 2011/2012 field-measured noise levels are shown on **Table 6-1**.

6.2 TNM Model Validation

A TNM noise model (reflecting site-specific conditions, geometry, traffic volumes, vehicle distributions, and speeds recorded during the field noise measurements) was developed for each site. The TNM predicted noise levels were then compared to the field-measured noise levels described in Section 6.1. At all sites, the TNM model validation outputs agreed with the field measured noise levels (i.e., were within plus or minus 3 dBA). This indicates that the TNM model is valid and may be used for the prediction of existing and future noise levels.

The field noise levels and TNM-predicted noise levels for the model validations are shown on **Table 6-1**.

Table 6-1 Field and Model Validation Noise Levels (Leq)

					1
Measurement Site	Major Source(s) of Noise	Start Time	Date	Field Measured 2011/12** (dBA)	TNM Predicted* (dBA)
Receiver A: Buffalo State College near athletics area & dorms. - Activity Categories B and C (school, residential, & active sports area).	Route 198 & Iroquois Drive	7:49 AM 9:43 AM	2/8/2012 2/8/2012	61 58	60
Receiver B: Multiple receiver area within western area of linear park. - Activity Categories B and C (residential, church, school, park, playground, active sports area, & recreation area).	Route 198	7:54 AM 10:07 AM	12/1/2011 12/1/2011	67 63	64
Receiver C: McKinley High School & eastern linear park Activity Category C (school, park, & recreation area).	Route 198	8:36 AM 9:38 AM	12/1/2011 12/1/2011	62 61	61
Receiver D: BSC Campus House, library, & academic areas Activity Category C (school & library).	Route 198 & Iroquois Drive	8:27 AM 9:06 AM	2/8/2012 2/8/2012	65 65	63
Receiver E: BECHS green space, park, & oriental garden Activity Category C (library, park, picnic area, & recreation area).	Route 198	8:11 AM 10:19 AM	12/8/2011 12/7/2011	63 61	63
Receiver F: Albright-Knox Art Gallery, Rose Garden/Park, & Marcy Casino Activity Category C (picnic area & recreation area).	Route 198, Lincoln Pkwy., & Iroquois Dr.	8:36 AM 3:15 PM	12/8/2011 12/7/2011	62 64	62
Receiver G: Delaware Park & western Hoyt Lake Activity Category C (park, picnic area, playgrounds, & recreation area).	Route 198	7:13 AM 1:15 PM	2/3/2012 12/1/2011	72 67	70
Receiver H: Delaware Park trails & athletic areas/Nottingham Terrace residential. - Activity Categories B and C (residential, park, active sports area, & recreation area).	Route 198	7:23 AM 1:56 PM	12/2/2011 12/1/2011	70 70	71
Receiver I: Delaware Park & eastern Hoyt Lake Activity Category C (park & recreation area).	Delaware Ave., Route 198, & Ramps	7:50 AM 11:28 AM	2/3/2012 12/1/2011	61 61	60
Receiver J: Delaware Park trails & sports areas Activity Category C (park, picnic area, active sports area, & recreation area).	Route 198	7:55 AM 11:58 AM	12/2/2011 12/7/2011	65 62	66
Receiver K: Forest Lawn Cemetery walking/bike trails/park-like setting Activity Category C (cemetery & recreation area).	Route 198	8:39 AM 11:05 AM	2/3/2012 12/7/2011	65 65	66

Measurement Site	Major Source(s) of Noise	Start Time	Date	Field Measured 2011/12** (dBA)	TNM Predicted* (dBA)
Receiver L: Residential structures south of Route 198, BMHA housing, college dormitories, Canisius College, Medaille College - Activity Categories B and C (residential, school, & hospital).	Route 198 &	7:43 AM	2/9/2012	70	69
	Humboldt	9:56 AM	12/8/2011	67	
Receiver M: Residential structures north of Route 198, Hospital - Activity Category B (residential area), Activity Category D (hospital – Interior)	Route 198 &	7:18 AM	3/6/2012	68	67
	Humboldt	9:08 AM	2/9/2012	67	
Receiver N: Residential structures south of Route 198 Activity Category B (residential area).	Route 198 &	8:21 AM	2/9/2012	72	70
	Humboldt	10:48 AM	12/8/2011	73	
Receiver O: Residential structures north of Route 198 Activity Category B (residential area).	Route 198 &	7:39 AM	3/2/2012	70	67
	Humboldt	9:28 AM	2/3/2012	69	
Outlying Receiver P1: Residential near Austin Street, Military Road, & the Grant Street Intersection - Activity Category B (residential area).	Military Road & Austin Street	7:58 AM 2:30 PM	3/6/2012 12/7/2011	68 65	65
Outlying Receiver P2: Nichols School sports & academic areas. - Activity Category C (school & active sports area).	Amherst Street	8:30 AM 9:05 AM	3/2/2012 3/2/2012	58 57	60
Outlying Receiver P3: Residential on Middlesex Rd. between Elmwood Avenue & Lincoln Parkway. - Activity Category B (residential area).	Middlesex	7:18 AM	2/2/2012	53	53
	Road	4:15 PM	12/1/2011	53	
Outlying Receiver P4: Residential on Middlesex Rd. between Lincoln Parkway & Delaware Avenue. - Activity Category B (residential area).	Middlesex	7:58 AM	2/2/2012	54	54
	Road	3:37 PM	12/1/2011	56	
Outlying Receiver P5: Residential on Forest Ave. between Lincoln Parkway & Elmwood Avenue Activity Category B (residential area).	Forest Avenue & Lincoln Pkwy.	8:45 AM 1:30 PM	2/2/2012 12/7/2011	57 57	59

⁻⁻⁻⁻ These measurements were not modeled. Measurements were modeled for AM peak hours at each site.

^{*} The model is considered valid if the modeled noise levels are within ±3 dBA of field sound levels (see Section 4.0).

^{**} Examination of field measured noise levels and extraneous noises (e.g., construction equipment, music, loud voices, animals, wind noise) indicated that AM peak hours had the worst case traffic volumes and traffic-related noise throughout the measured intervals.

7.0 PREDICTION OF NOISE LEVELS USING DESIGN TRAFFIC VOLUMES

Once the model is validated, it is used to predict existing and future highway traffic noise levels along the entire project.

7.1 Model Inputs

As stated earlier, the FHWA TNM model accounts for such factors as:

- Traffic Volumes and Classifications;
- Vehicle Operations Speeds;
- Roadway Alignment and Grade; and
- Physical Features.

Each of these factors are discussed below.

7.1.1 Traffic Volumes and Classifications

Traffic volumes and vehicle classifications, recorded during the field noise measurements, were used to validate the model. Validation modeling used the field obtained volumes, which were broken down into the five TNM default vehicle classifications (automobiles, medium trucks, heavy trucks, buses, and motorcycles). 2016 recorded traffic volumes and vehicle classifications were used to develop an existing conditions model for comparison to the predicted noise levels under the Build Alternative. The field-obtained volumes for the 2016 existing conditions model were broken down into three TNM default vehicle classifications (automobiles, medium trucks, and heavy trucks).

Future (2040) peak hour traffic volumes for area roadways were developed for the project. For further information on how the traffic volumes were derived, please refer to Section 3.3.1.6. and Exhibits 3.3.1.6.-2 through 3.3.1.6.-11 in Appendix C of the Design Report / Environmental Impact Statement.

The 2040 peak hour traffic data were then broken down into the vehicle classification percentages obtained during the field noise measurements and incorporated into the TNM peak hour noise models.

7.1.2 Vehicle Operating Speeds

The vehicle operating speeds used for the 2040 models are generally the worst-case free flow speeds obtained from the project's traffic model.

For further information on the traffic modeling, see Section 3.2.3.2 and Exhibits 3.2.3.2.-2 through 3.2.3.2.-8, along with Section 3.2.3.3. and Exhibit 3.2.3.3-1 of the Design Report / Environmental Impact Statement.

7.1.3 Roadway Alignment and Grade

Roadway alignments and grades used in preparing the noise prediction models for the Build and No-Build Alternatives were obtained from the project plans.

7.1.4 Physical Features

Existing and proposed physical features, such as structures, embankment slopes, earth cut sections and earth berms, can act as noise barriers. Physical features were identified during the field measurements for potential inclusion in the noise prediction models, as appropriate.

7.2 Model Results and Impact Assessment

7.2.1 Model Results

Predicted existing and future traffic noise levels for the receivers based on TNM modeling are summarized in **Table 7-1**. Please note that additional receiver points were incorporated into the TNM model at analysis areas G, H, L, M, N, and O since the nearest sensitive receptor within each of these analysis areas had predicted future traffic noise levels above the NAC. Predicted existing and future traffic noise levels based on TNM modeling are summarized in **Table 7-2** through **Table 7-7**.

Table 7-1 Summary of Analysis Areas - Traffic Noise Levels (Leq)

Receiver				Noise Level (Leq)			
			Design Year (2040)				
Receiver Location	FHWA Category	NAC (dBA)	Existing Conditions (dBA)	No-Build Alternative (dBA)	Build Alternative (dBA)	Impact	
Receiver A: Buffalo State College near athletics area & dorms Activity Categories B and C (school, residential, & active sports area).	B & C	67 (Exterior)	57	57	57	No	
Receiver B: Multiple receiver area within western area of linear park. - Activity Categories B and C (residential, church, school, park, playground, active sports area, & recreation area).	B&C	67 (Exterior)	60	60	59	No	
Receiver C: McKinley High School & eastern linear park Activity Category C (school, park, & recreation area).	С	67 (Exterior)	58	58	58	No	
Receiver D: BSC Campus House, library, & academic areas Activity Category C (school & library).	C	67 (Exterior)	61	62	61	No	
Receiver E : BECHS green space, park, & oriental garden.	С	67 (Exterior)	61	61	60	No	

- Activity Category C (library, park, picnic area, & recreation area).						
Receiver F: Albright-Knox Art Gallery, Rose Garden/Park, & Marcy Casino Activity Category C (picnic area & recreation area).	С	67 (Exterior)	61	61	61	No
Receiver G: Delaware Park & western Hoyt Lake Activity Category C (park, picnic area, playgrounds, & recreation area).	С	67 (Exterior)	66	66	66	Yes
Receiver H: Delaware Park trails & athletic areas/Nottingham Terrace residential. - Activity Categories B and C (residential, park, active sports area, & recreation area).	B&C	67 (Exterior)	68	68	68	Yes
Receiver I: Delaware Park & eastern Hoyt Lake Activity Category C (park & recreation area).	С	67 (Exterior)	59	60	60	No
Receiver J: Delaware Park trails & sports areas Activity Category C (park, picnic area, active sports area, & recreation area).	С	67 (Exterior)	64	64	64	No
Receiver K: Forest Lawn Cemetery walking/bike trails/park-like setting Activity Category C (cemetery & recreation area).	С	67 (Exterior)	63	64	63	No
Receiver L: Residential structures south of Route 198, BMHA housing, college dormitories, Canisius College, Medaille College - Activity Category B (residential, school, & hospital).	В	67 (Exterior)	71	71	71	Yes
Receiver M: Residential structures north of Route 198 Activity Category B (residential area).	В	67 (Exterior)	67	67	67	Yes
Receiver N: Residential structures south of Route 198 (see Table 7-5 for NAC Activity Category D) Activity Category B (residential area).	В	67 (Exterior)	70	70	70	Yes
Receiver O: Residential structures north of Route 198 Activity Category B (residential area).	В	67 (Exterior)	67	67	67	Yes
Outlying Receiver P1: Residential near Austin Street, Military Road, & the Grant Street Intersection - Activity Category B (residential area).	В	67 (Exterior)	65	65	65	No
Outlying Receiver P2: Nichols School sports & academic areas Activity Category C (school & active sports area).	С	67 (Exterior)	60	60	60	No
Outlying Receiver P3: Residential on	В	67	51	51	51	No

Middlesex Rd. between Elmwood Avenue		(Exterior)				
& Lincoln Parkway.						
- Activity Category B (residential area).						
Outlying Receiver P4: Residential on	В	67	53	54	53	No
Middlesex Rd. between Lincoln Parkway		(Exterior)				
& Delaware Avenue.						
- Activity Category B (residential area).						
Outlying Receiver P5: Residential on	В	67	59	59	59	No
Forest Ave. between Lincoln Parkway &		(Exterior)				
Elmwood Avenue.		,				
- Activity Category B (residential area).						
,						

NOTES: An impact occurs if the Build Alternative noise level is 6 dB(A) or greater than the existing level OR the noise level approaches or exceeds the NAC, where "approach" is defined as 1 dB(A) below the NAC of 67 dB(A) for Activity Categories B and C.

ı	TABLE 7-2 ANALYSIS AREA G (Delaware Park) Eastbound Side of NYS Rte. 198 Between Lincoln Ave and Pedestrian Bridge TRAFFIC NOISE LEVELS (Leq)											
Receiver Site	Location	FHWA Activity Category (NAC in dB(A))	Number of Equivalent Dwelling Units	Existing Noise Levels (dB(A))	E (ed 2040 Noise (dB(A))	Noise Level Differences (Build - Existing)	Impact ⁽¹⁾				
G1	Delaware Park	C (67)	2	66	66	66	0	YES				

NOTES: (1) - An impact occurs if the Build Alternative noise level is 6 dB(A) or greater than the existing level OR the noise level approaches or exceeds the NAC, where "approach" is defined as 1 dB(A) below the NAC of 67 dB(A) for Activity Categories B and C.

	TABLE 7-3 ANALYSIS AREA H (Delaware Park) Westbound Side of NYS Rte. 198 Between Lincoln Ave and Delaware Ave TRAFFIC NOISE LEVELS (Leq)												
Receiver Site	Location	FHWA Activity Category	Number of Dwelling Units or	Noise Levels	Future	ed 2040 Noise (dB(A))	Noise Level Differences (Build -	Impact ⁽¹⁾					
S ito		(NAC in dB(A))	Equivalent	(dB(A))	No- Build	Build	Existing)						
H1	Delaware Park	C (67)	4	68	68	68	0	YES					
H2	Nottingham	B (67)	6	60	60	60	0	NO					
H3	Nottingham	B (67)	4	61	61	61	0	NO					
H4	Nottingham	B (67)	1	60	61	60	0	NO					

NOTES: (1) - An impact occurs if the Build Alternative noise level is 6 dB(A) or greater than the existing level OR the noise level approaches or exceeds the NAC, where "approach" is defined as 1 dB(A) below the NAC of 67 dB(A) for Activity Categories B and C.

TABLE 7-4 ANALYSIS AREA L Eastbound Side of NYS Rte. 198 Between Parkside Avenue and Main Street TRAFFIC NOISE LEVELS (Leq)

Receiver Site	Location	Category		of Noise Levels L		ed 2040 Noise (dB(A))	Noise Level Differences (Build -	
		(NAC in dB(A))	Units	(dB(A))	No- Build	Build	Existing)	
L1	Humboldt Pkwy 1	B (67)	3	69	69	69	0	YES
L2	Humboldt Pkwy 2	B (67)	2	71	71	71	0	YES
L3	Humboldt Pkwy 3	B (67)	2	71	71	71	0	YES
L4	Humboldt Pkwy 4	B (67)	4	71	71	71	0	YES
L5	Humboldt Pkwy 5	B (67)	1	71	71	71	0	YES
L6	APT_BLD 2 nd FI.1	B (67)	2	65	65	65	0	NO
L7	APT_BLD 2 nd FI.2	B (67)	3	65	66	65	0	NO
L8	APT_BLD 2 nd FI.3	B (67)	3	68	68	68	0	YES
L9	APT_BLD 2 nd Fl.4	B (67)	3	69	69	69	0	YES
L10	APT_BLD 3 rd Fl.1	B (67)	2	67	67	67	0	YES
L11	APT_BLD 3 rd Fl.2	B (67)	3	67	68	67	0	YES
L12	APT_BLD 3 rd Fl.3	B (67)	3	70	70	70	0	YES
L13	APT_BLD 3 rd FI.4	B (67)	3	70	71	70	0	YES

NOTES: (1) - An impact occurs if the Build Alternative noise level is 6 dB(A) or greater than the existing level OR the noise level approaches or exceeds the NAC, where "approach" is defined as 1 dB(A) below the NAC of 67 dB(A) for Activity Categories B and C.

(2) – Exterior frequent use areas (balcony/deck locations) were identified and placed in the model for Apartment Building 2nd & 3rd floors.

TABLE 7-5 ANALYSIS AREA M Westbound Side of NYS Rte. 198 Between Parkside Avenue and Main Street TRAFFIC NOISE LEVELS (Leq)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										
Receiver Site	Location	FHWA Activity Category	Number of Dwelling	Existing Noise Levels	Predicted 2040 Future Noise Levels (dB(A))		Noise Level Differences (Build -				
		(NAC in dB(A))	Units	(dB(A))	No- Build	Build	Existing)				
M1	Humboldt Pkwy	B (67)	1	69	69	69	0	YES			
M1A	Hospital (Interior)	D (52)	1	37	37	37	0	NO			
M2	Humboldt Pkwy	B (67)	4	71	71	71	0	YES			
М3	Humboldt Pkwy	B (67)	3	70	70	70	0	YES			
M4	Humboldt Pkwy	B (67)	7	69	70	69	0	YES			
M5	Humboldt Pkwy	B (67)	3	66	67	66	0	YES			
M6	Humboldt Pkwy	B (67)	2	66	66	66	0	YES			
M7	Humboldt Pkwy	B (67)	2	66	66	66	0	YES			
M8	Humboldt Pkwy	B (67)	1	66	67	66	0	YES			

NOTES: (1) - An impact occurs if the Build Alternative noise level is 6 dB(A) or greater than the existing level OR the noise level approaches or exceeds the NAC, where "approach" is defined as 1 dB(A) below the NAC of 67 dB(A) for Activity Categories B and C.

TABLE 7-6 ANALYSIS AREA N Eastbound Side of NYS Rte. 198 Between Kensington and East Limits TRAFFIC NOISE LEVELS (Leq)

Receiver Site	Location	FHWA Activity Category	Number of Dwelling	Existing Noise Levels	Predicted 2040 Future Noise Levels (dB(A))		Noise Level Differences (Build -	
		(NAC in dB(A))	Units	(dB(A))	No- Build	Build	Existing)	
N1	Humboldt Pkwy	B (67)	12	67	67	67	0	YES
N2	Humboldt Pkwy	B (67)	4	67	68	68	1	YES
N3	Humboldt Pkwy	B (67)	5	68	69	69	1	YES
N4	Humboldt Pkwy	B (67)	4	70	71	71	1	YES
N5	Humboldt Pkwy	B (67)	5	71	72	72	1	YES
N6	Humboldt Pkwy	B (67)	2	72	72	72	0	YES
N7	Humboldt Pkwy	B (67)	4	68	68	68	0	YES
N8	Humboldt Pkwy	B (67)	3	67	68	68	1	YES
N9	Humboldt Pkwy	B (67)	1	69	69	69	0	YES
N10	Humboldt Pkwy	B (67)	4	67	67	67	0	YES
N11	Humboldt Pkwy	B (67)	4	68	68	68	0	YES
N12	Humboldt Pkwy	B (67)	7	68	68	68	0	YES
N13	Humboldt Pkwy	B (67)	2	68	69	69	1	YES

NOTES: (1) - An impact occurs if the Build Alternative noise level is 6 dB(A) or greater than the existing level OR the noise level approaches or exceeds the NAC, where "approach" is defined as 1 dB(A) below the NAC of 67 dB(A) for Activity Categories B and C.

TABLE 7-7 ANALYSIS AREA O Westbound Side of NYS Rte. 198 Between Kensington and East Limits TRAFFIC NOISE LEVELS (Leg)

TRAITIC NOISE LEVELS (Leq)										
Receiver Site	Location	FHWA Activity Category	Number of Dwelling	Existing Noise Levels	Predicted 2040 Future Noise Levels (dB(A))		Noise Level Differences (Build -			
		(NAC in dB(A))	Units	(dB(A))	No- Build	Build	Existing)			
01	Humboldt Pkwy	B (67)	4	68	68	69	1	YES		
O2	Humboldt Pkwy	B (67)	1	67	67	68	1	YES		
O3	Humboldt Pkwy	B (67)	4	67	67	68	1	YES		
O4	Humboldt Pkwy	B (67)	4	68	68	69	1	YES		
O5	Humboldt Pkwy	B (67)	2	70	70	70	0	YES		
O6	Humboldt Pkwy	B (67)	1	70	70	71	1	YES		
07	Humboldt Pkwy	B (67)	9	70	70	70	0	YES		
08	Humboldt Pkwy	B (67)	3	69	69	69	0	YES		
O9	Humboldt Pkwy	B (67)	3	67	67	67	0	YES		
O10	Humboldt Pkwy	B (67)	4	66	67	67	1	YES		
011	Humboldt Pkwy	B (67)	3	66	67	67	1	YES		
012	Humboldt Pkwy	B (67)	3	64	64	64	0	NO		

NOTES: (1) - An impact occurs if the Build Alternative noise level is 6 dB(A) or greater than the existing level OR the noise level approaches or exceeds the NAC, where "approach" is defined as 1 dB(A) below the NAC of 67 dB(A) for Activity Categories B and C.

The results indicate that the Build Alternative would reduce traffic noise levels at 2 of the 20 project analysis areas (B and E), and at 16 of the 20 project analysis areas (A, C, D, F, G, H, I, J, K, L, M, P1, P2, P3, P4, and P5) the noise levels are not anticipated to change. At analysis areas N, and O, the greatest increase in traffic noise levels from the existing conditions to the Build Alternative is 1 dB(A). According to the FHWA's "Highway Traffic Noise: Analysis and Abatement Guidance," 3 dB(A) increases are barely perceptible by the human ear.

7.2.2 Noise Impact Determination

A traffic noise impact can be expected from a project if one or both of the following occurs:

- 1. The predicted future traffic noise levels <u>approach or exceed</u> the NAC as specified in **Table 5-1** ("Approach" is defined as within 1 dBA of the NAC.)
- 2. The predicted future traffic noise levels exceeds existing noise levels by 6 dBA or more ("substantial increase").

The predicted future traffic noise levels approach or exceed the NAC established for Land Use Categories B and C for 45 analysis sites (145 dwelling unit receptors and 6 equivalent residential receptors for park areas). For the remaining sites, the future predicted traffic noise levels do not approach or exceed the NAC, nor do they cause substantial increases of 6 dB(A) or greater over existing noise levels. Noise impacts were identified at receivers within analysis locations G, H, L, M, N, and O due to predicted future traffic noise levels approaching or exceeding the NAC established for Land Use Categories B and C (see Table 7-2 through Table 7-7). When noise impacts are predicted for a project, noise abatement must be considered for each impact. Therefore, noise abatement measures were considered for the Build Alternative.

8.0 NOISE ABATEMENT

Noise abatement measures were considered for those sites where traffic noise impacts were determined to occur. When noise abatement measures are being considered, NYSDOT Noise Policy requires that every reasonable effort must be made to obtain noise reductions of 10 or more dB(A). For a measure to be deemed feasible, it must provide a minimum 5 dB(A) reduction to the majority of impacted receptors. In addition, noise abatement measures must meet NYSDOT-established reasonableness cost indices (\$80,000 per benefited receptor for a noise berm or noise insulation; 2,000 square feet of wall per benefited receptor for barrier walls). A benefited receptor is any receptor where the noise level is reduced by 5 dBA or more by implementation of the noise abatement measure(s). In addition, for an abatement measure to be deemed reasonable, a majority of the benefited receptors must achieve the noise reduction design goal of 7 dB(A).

8.1 Traffic Management/Highway Design

One method of noise abatement is through traffic management, which includes specific lane designations, prohibition or time restriction of certain vehicle types, and modified speed limits. Lane designations would not be effective since the lanes are generally only two lanes wide in each direction. In addition, lane designations would not be practical since the proposed roadways have exit ramps or connecting roadways that must be maintained at all times for neighborhood residents, as well as for school busses and delivery trucks.

Prohibition or time restriction of heavy vehicles along the local roadways in these areas is not considered practical because this area of the City is a mix of commercial and residential land use where most of the heavy vehicles are delivery trucks and busses that are essential to commerce within the study area and cannot be re-routed.

Regarding speed limit reductions, it is not practical to reduce the speed limit on this corridor below 30 mph.

Due to the ineffectiveness and impracticality of these methods, traffic management is not a practical method for noise abatement for this project.

8.2 Alteration of Horizontal and Vertical Alignments

Highway design modification, such as locating the highway farther from receivers or altering profile grades, is another method of noise abatement. Potential changes in horizontal or vertical alignment were evaluated to determine if these measures would be feasible and reasonable for this project.

Evaluation of vertical alignment changes:

Reduction of noise levels through modification of the vertical profile of the Build Alternative would be due to the reduction of the line-of-sight

between the vehicular noise sources (tire noise and exhaust pipes) and the receivers. Most automobiles and light trucks have exhaust pipes located at approximately 0.3 to 0.6 meters (1-2 feet) above the roadway surface, however, it should be noted that many trucks/busses have exhaust pipes that outlet at approximately 3 meters (9.8 feet) above the roadway surface. Options for changes in vertical alignment include the following:

1. Lowering the roadway - Depending on the elevation of the receptors and location with respect to the roadway, NYS Route 198 would have to be lowered approximately 1-2 meters (3.3-6.6 feet) in the area of the impacted receivers to *begin* to reduce noise levels; however, reduction of noise levels to an extent that would justify implementation of an abatement measure would likely require a more extreme change in the vertical alignment. It should be noted that the elevation of NYS Route 198 in front of Receiver M is substantially lower than the receiver location and a traffic noise impact is still predicted at that location.

Engineering obstacles for lowering the roadway elevation include side-street tie-ins, potential flooding concerns and the likely requirement of pumping stations for stormwater drainage along the corridor.

2. Raising the roadway - The roadway would have to be raised over 2-3 meters (6.6-9.8 feet) to *begin* to reduce noise levels to adjacent residences. However, reduction of noise levels to an extent that would justify implementation of an abatement measure would likely require a more extreme change in the vertical alignment. Engineering obstacles for raising the roadway elevation include side-street tie-ins and high costs.

In general, due to the above mentioned engineering obstacles for raising or lowering the roadway, construction of vertical alignment changes are not feasible and/or reasonable in the areas of the impacted receivers. In addition, the amount of fill and right-of-way involved to raise or lower the roadway enough to obtain an acceptable reduction in noise levels at the impacted receiver locations would be cost prohibitive and involve property acquisitions.

Evaluation of horizontal alignment changes:

Generally, a large shift of 100 feet or more is needed to yield noise reductions large enough to justify implementation of horizontal alignment change as an abatement measure. For each of the impacted receivers, there are noise sensitive receptors on both sides of the road since NYS Route 198 is centered between either residential properties or parkland in these impacted areas. If the roadway alignment were to be substantially shifted to either direction, the higher noise levels would be shifted toward the receptors on the other side of the roadway. Therefore, a horizontal

alignment change is not a feasible and/or reasonable method for noise abatement along the project corridor.

Due to the ineffectiveness and impracticality of these methods, alteration of horizontal or vertical alignments was dismissed from further consideration.

8.3 Noise Barriers

To determine whether noise barriers would be feasible and reasonable for this project, noise barrier analyses were performed for the analysis areas G, H, L, M, N, and O, since noise impacts occur at 45 analysis sites within these areas, as shown above in **Table 7-2** through **Table 7-7**. The evaluated noise barriers are presented on **Figure NB1** and **Figure NB2** of **Attachment A**. The evaluated noise barriers include:

Barrier G – located along Eastbound NYS Rte. 198 in Delaware Park between Lincoln Avenue and the Pedestrian Bridge.

Barrier H – located along Westbound NYS Rte. 198 in Delaware Park between Lincoln Avenue and Delaware Avenue.

Barrier L – located along Eastbound NYS Rte. 198 between Parkside Avenue and Main Street.

Barrier M – located along Westbound NYS Rte. 198 between Parkside Avenue and Main Street.

Barrier N – located along Eastbound NYS Rte. 198 between Glendale Place and Hughes Avenue.

Barrier O – located along Westbound NYS Rte. 198 between Kensington and Oak Grove Avenue.

To be recommended, a noise barrier must be both feasible and reasonable.

Feasibility

Feasibility involves the practical capability of the noise abatement measure being built as well as the capacity to achieve a minimum reduction in noise levels. In regards to acoustical feasibility, when noise abatement measures are being considered, every reasonable effort must be made to obtain noise reductions of 10 or more dB(A). For a measure to be deemed feasible, it must provide a minimum 5 dB(A) reduction to the majority of impacted receptors.

Reasonableness

Viewpoints: If a noise abatement measure is deemed feasible, meets the reasonableness cost index, and meets the noise reduction design goal, the viewpoints of property owners and residents are solicited. A response must be

obtained from at least half of the benefited property owners and residents and a majority of the responses must favor the abatement measure to be deemed reasonable.

Cost: NYSDOT has established the following reasonableness cost index for barrier walls as abatement measures: a maximum of 2,000 square feet (185 square meters) of wall per benefited receptor. All owner-occupied and rental dwelling units; detached, duplex, and mobile homes; and multifamily apartment units are counted if they are benefited, regardless of whether or not they were identified as impacted. The threshold of noise reduction that establishes a "benefited" property is at least 5 dB(A) determined at a point where frequent human use occurs and a lowered noise level would be of benefit.

Noise Reduction: NYSDOT Noise Policy establishes a Noise Reduction Design Goal of 7 dB(A). For an abatement measure to be determined reasonable, a majority of the benefited receptors must achieve the design goal. For example, if 10 receptors were "benefited" (i.e., would receive at least a 5 dB(A) noise reduction if the abatement measure were implemented), then at least 6 receptors must receive a 7 dB(A) noise reduction for the abatement measure to be considered reasonable under this criteria.

Each criterion (viewpoints, cost, and noise reduction) must be met for the measure to be considered reasonable for implementation.

The results of each evaluated barrier, including barrier location, existing hourly $L_{\rm eq}$ noise levels, future hourly $L_{\rm eq}$ noise levels without and with a barrier, barrier length and height, and the range of noise reduction provided by the barrier are presented in **Table 8-1**. The total number of impacts and benefits, the number of impacted receptors that would experience at least a 5 dB(A) noise reduction, the number of benefited receptors with 7 dB(A) or more attenuation, the cost reasonableness index (based on a barrier wall square area value per benefited receptor), the number of benefited receptors (i.e., residential, commercial, or equivalent), the cost per benefited receptor, acoustical feasibility determination, and feasibility and reasonableness determination for each of the barriers is presented in **Table 8-2**.

TABLE 8-1 EVALUATED NOISE BARRIERS									
Noise E Barrier G	Figure	Location	Existing L _{eq} (1hr) Noise Levels, dB(A)	Range of Future Build L _{eq} (1hr) Noise Levels, dB(A)		Barrier Characteristics			
	Ф			w/o Barrier	With Barrier	Approx. Length (m)	Avg. Height (m)		
G	NB1	Delaware Park	66	66	60	155	4		
Н	NB1	Delaware Park & Nottingham	60-68	60-68	57-59	512	4		
L	NB2	Parkside to Main	65-71	65-71	60-70	264	4.5		
М	NB2	Parkside to Main	66-71	66-71	60-69	260	5		
N	NB2	Glendale Place to Hughes Avenue	67-72	67-72	59-71	370	6		
0	NB2	Kensington to Oak Grove Avenue	64-70	64-71	59-70	291	6		

	TABLE 8-2 NOISE BARRIER FEASIBILITY AND REASONABLENESS										
		Numb	er of A	Attenuate	ed Loc	cations			Feasible	Reasonable	
Noise	Total #	T B Rt	(Imp	dB(A) pacted eptors)	(Be	dB(A) enefited ceptors)	Sq-m of Modeled	Sq-m of Wall			
Barrier ID	# of Impacts	Total # of Benefited Receptors	#	% of Impacted	Per	Per Benefited Receptor	(Y / N)	(Y / N)			
G	2	2	2	100%	2	100%	620	310	Υ	N	
Н	4	4	4	100%	4	100%	2048	512	Υ	N	
L	29	17	17	55%	7	41%	1188	70	Υ	N	
М	23	8	8	35%	5	71%	1300	163	N	Y	
Ν	57	27	27	47%	25	93%	2220	82	N	Υ	
0	38	10	10	26%	7	70%	1746	175	N	Υ	

The evaluated noise barriers for analysis areas G and H were found to satisfy NYSDOT's feasibility criteria but did not pass the reasonableness criteria because these evaluated barriers resulted in a square-meter of wall per benefited

receptor value that is above the allowable 2000 sq-ft (185 sq-m) value. The evaluated noise barrier for analysis area L was found to satisfy NYSDOT's feasibility criteria but did not pass the reasonableness criteria because there was not a majority of the benefited receptors achieving the noise reduction design goal. The remaining evaluated barriers (M, N and O) were found to satisfy NYSDOT's reasonableness criteria but did not pass the acoustical feasibility because none of these evaluated barriers would provide the minimum 5 dB(A) reduction to the majority of impacted receptors. As none of the barriers were both reasonable and feasible, viewpoints were not solicited.

8.4 Acquisition of Real Property to Serve as a Buffer Zone

This abatement measure allows for acquisition of real property or interests therein (predominantly unimproved property) to serve as a buffer zone to preempt development that would be adversely impacted by traffic noise. Since the impacted receivers are located within a developed City corridor, this would be ineffective as an abatement measure for the impacted receivers.

8.5 Summary Discussion of Noise Abatement

For the impacted areas, noise abatement measures were evaluated (see Sections 8.1 through 8.4). None of the noise abatement measures met the established criteria for feasibility and reasonableness.

9.0 CONSTRUCTION NOISE

Construction noise differs from traffic noise in the following ways:

- Construction noise only lasts for the duration of the construction contract.
- Construction activities are generally short term.
- Construction noise is intermittent and depends on the type of operation.

Short-term construction noise from activities, such as earthwork, land clearing, pile driving, paving, and structure demolition and construction, could affect abutting receptors. Noise and vibration levels due to construction at specific locations are a function of the number and types of construction equipment that would be utilized for a specific phase of project construction, and are highly variable throughout the various phases of construction.

Night time construction would generally be avoided but may need to be considered on a limited basis to avoid traffic congestion that would result if those operations were performed during daytime hours. The City of Buffalo noise ordinance (Chapter 293) prohibits unreasonable noise, which includes construction work between the hours of 9 PM and 7 AM. NYSDOT activities are not subject to local noise ordinances; however, NYSDOT would make reasonable effort to comply with the provisions of the City of Buffalo's ordinance.

Construction noise abatement measures would be evaluated during final design. Examples of construction noise abatement techniques include locating high noise level equipment away from sensitive receptors, awareness of potential noise problems and complaints, and maintenance of proper muffling devices.

10.0 STATEMENT OF LIKELIHOOD

Based on the studies performed thus far, NYSDOT recommends no noise abatement measures for this project. A final decision on the recommendations would be made upon completion of the project design and public involvement process (as applicable).

11.0 COORDINATION WITH LOCAL OFFICIALS

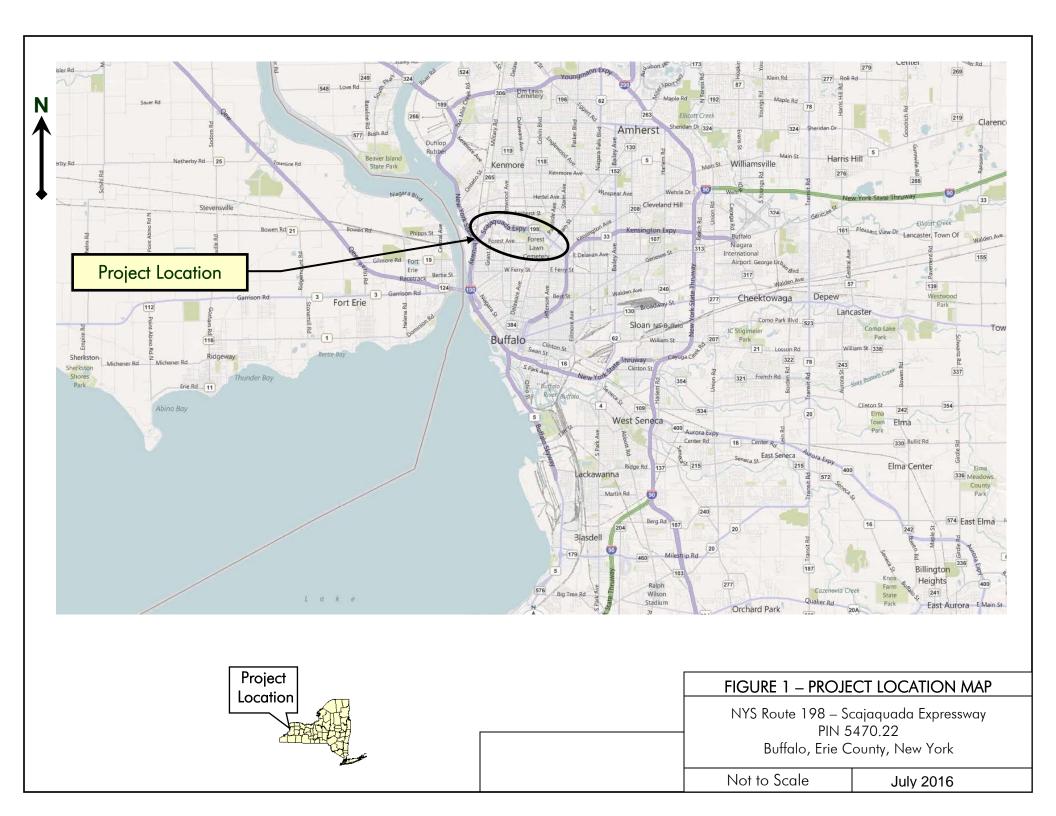
Noise-compatible land use planning can help to minimize future traffic noise impacts in the vicinity of highway projects. As stated in NYSDOT Noise Policy, the effective implementation of noise-compatible planning measures is a shared responsibility between NYSDOT and local governments. As such, the following information is being provided to inform local officials of the noise levels that could be expected by the Build Alternative at various distances from NYS Route 198 in the vicinity of the noise study area, and techniques that could be used to prevent future traffic noise impacts.

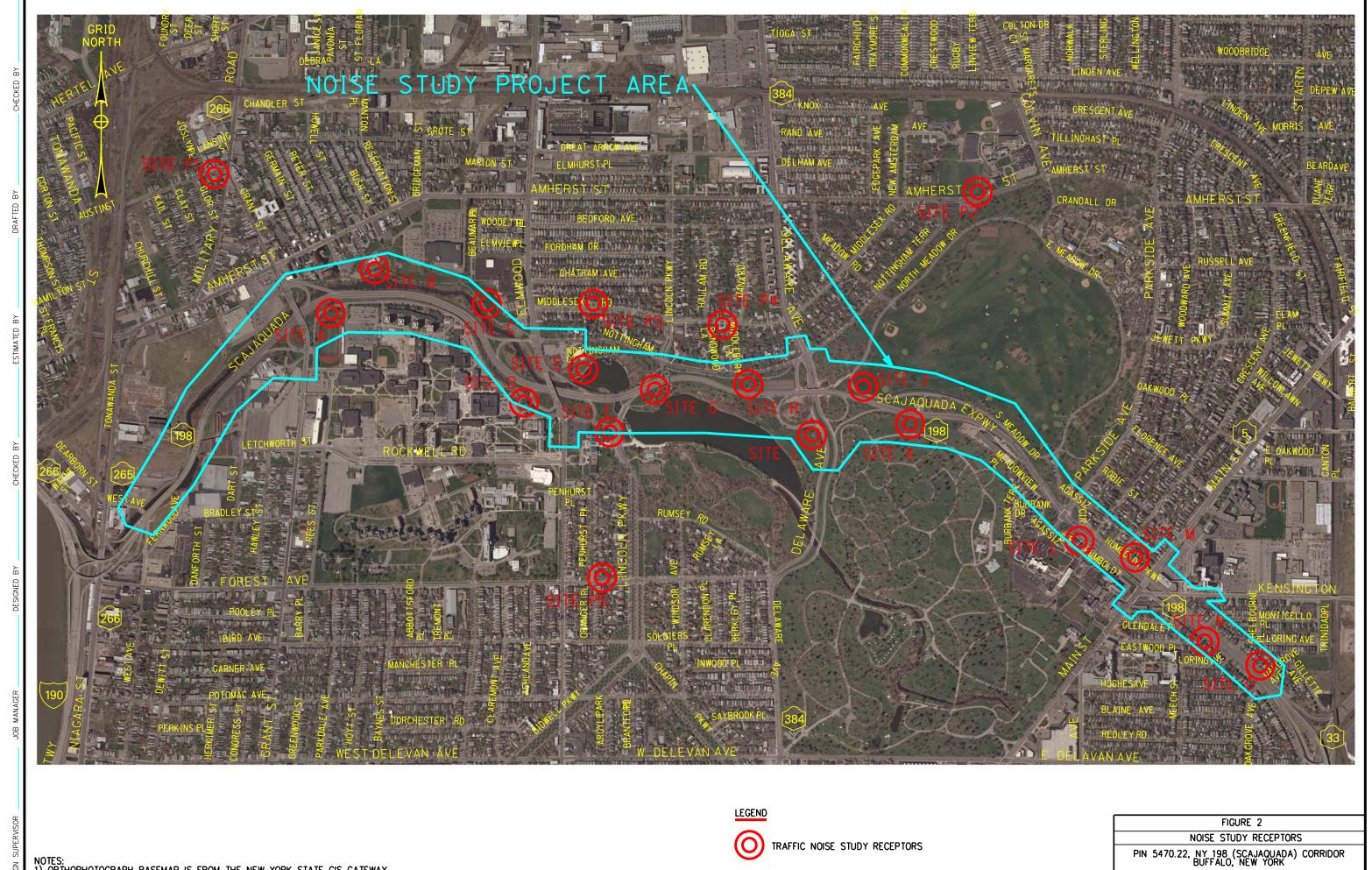
A. <u>Recommended Distances from Human Activities</u> - The calculated distances between the median of NYS Route 198 and various noise contours are based upon TNM 2.5 computed future loudest hour traffic noise levels, and are provided in **Table 11-1**.

TABLE 11-1 INFORMATION FOR LOCAL OFFICIALS Recommended Distance Needed from the Highway Median to a Specified Leq Noise Level (ft)									
Location	Human Activity is Predominately Outdoor (Indoor and Building would Provide 20 dB(A) Reduction) ⁽¹⁾	FHWA NAC "B" (2)							
Main Highway Segment Limits	Main Hwy.	61 dB(A)	66 dB(A)						
Grant Street to Elmwood Ave.	NYS Route 198	200	105						
Elmwood Ave. to Delaware Ave.	NYS Route 198	210	140						
Delaware Ave. to Parkside Ave.	NYS Route 198	190	105						
Parkside Ave. to Main Street	NYS Route 198	240	160						
Kensington Ave. to Eastern Limits	NYS Route 198	270	170						

NOTES:

- (1) The recommended distance for outdoor activities is measured from the centerline of the highway median (or highway directional lanes) to the limit of the "active use area." The 61 dB(A) is more conservative than the FHWA NAC 'B' of 66 dB(A), but provides a greater quality of life and lower annoyance. The recommended distance for indoor activities is measured from the centerline of the highway median (or highway directional lanes) to the building structure. It is assumed that building structures provide a 20 dB(A) reduction from building construction with central HVAC and double pane, non-opening windows.
- (2) The recommended distance is measured from the centerline of the highway median (or highway directional lanes) of NYS Route 198 to the limit of the "active use area." The 66 dB(A) represents the FHWA NAC for Activity Category B & C.
- B. <u>Noise Compatible Land Use Planning References</u> Reference information such as "The Audible Landscape" found at www.fhwa.dot.gov/environment/audible/index.htm and "Entering the Quiet Zone" found at www.fhwa.gov/environment/noise/quietzone/index.htm may be useful to local communities in protecting future land development from becoming incompatible with anticipated highway noise levels.




12.0 REFERENCES

- 1. NYSDOT, <u>The Environmental Manual (TEM)</u>, prepared by the NYSDOT Engineering Division Office of Environment, April 2011. Section 4.4.18 Noise Analysis Policy and Procedures (NYSDOT Noise Policy)
- 2. <u>Field Measurement of Existing Noise Levels</u>, prepared by Noise Measurement Unit, Materials Bureau, NYSDOT, May 1986.
- 3. <u>FHWA Traffic Noise Model (TNM) 2.5: User's Guide</u>, Federal Highway Administration, April 2004.
- 4. <u>FHWA Traffic Noise Model (TNM) 1.0: Technical Manual</u>, Federal Highway Administration, February 1998 (including updates to 2.5).
- 5. <u>Federal-Aid Policy Guide</u>, Subchapter H, Part 772 of Title 23 of the Code of Federal Regulations, Federal Highway Administration, Washington, D.C., December 9, 1991, Transmittal 1.

1:12,000 (11"x17" plot) July 2016

NOTES:
1) ORTHOPHOTOGRAPH BASEMAP IS FROM THE NEW YORK STATE GIS GATEWAY

Figure NB1 - Evaluated Noise Barriers (Area G and Area H)

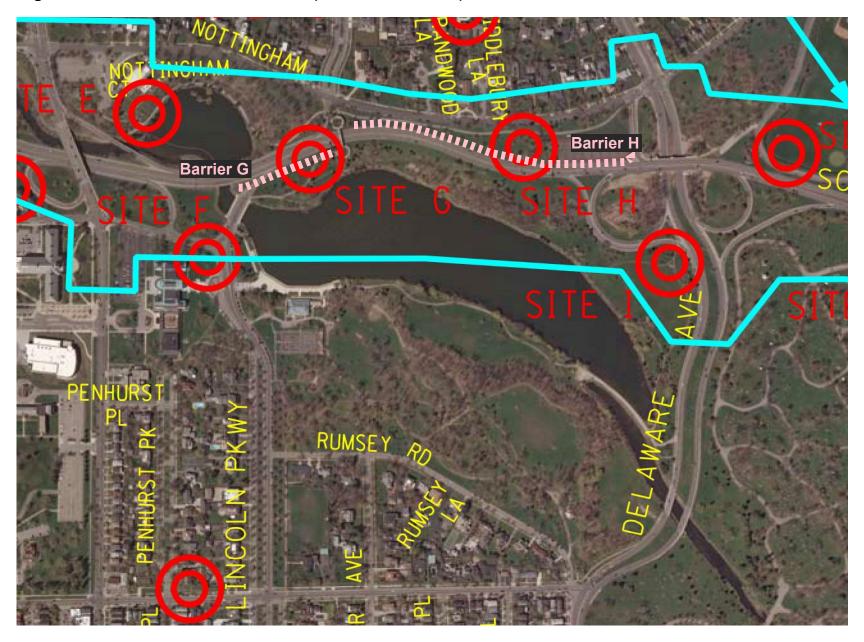
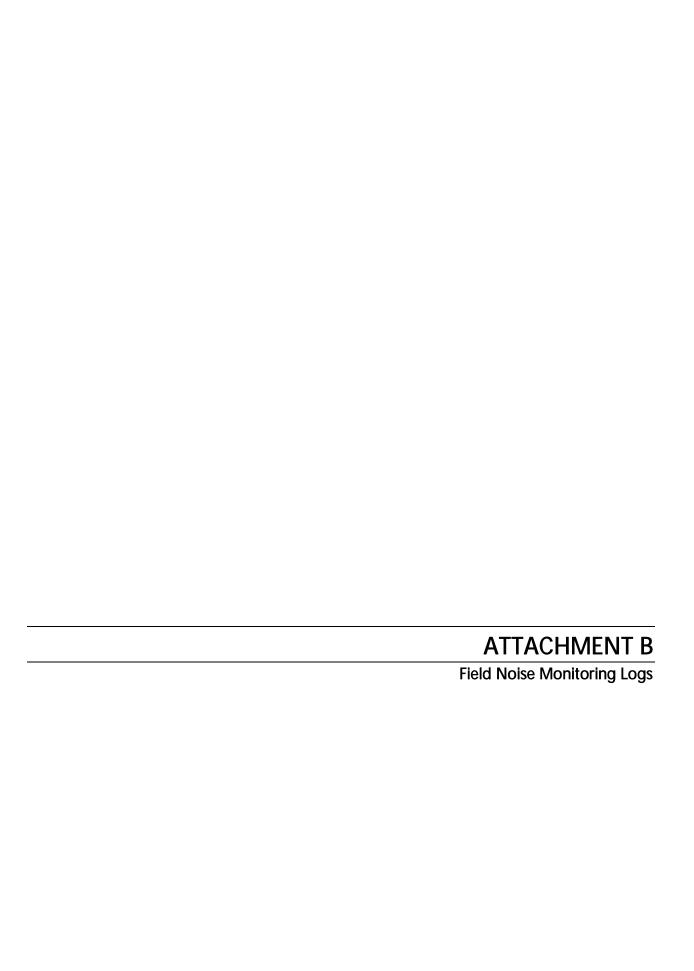
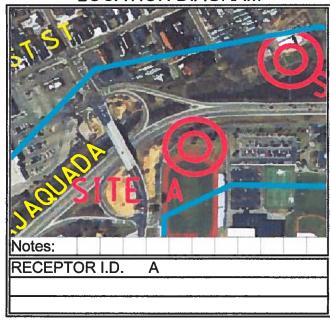



Figure NB2 - Evaluated Noise Barriers (Area L, Area M, Area N and Area O)

DATE:	2/8/2012	PROJECT NAME:	Rt. 198, Scajaquada Expressway
		LOCATION:	Buffalo, New York
IOP NO:	V6107		

JOB NO: Y6197
PIN NO: 5470.22 PERSONNEL: R5, GM, MM, PGP


INSTRUMENT: CASELLA CEL-633C NOISE
S/N: 29/1023 RUN LEVEL
WEIGHTING: A TIME dBA COMMENTS

WIND: CALM DIRECTION: ______
TEMPERATURE: 23° F

CALIBRATION: Before: 113, 1 dBA After: 115.0 dBA

HUMIDITY: 78%

LOCATION DIAGRAM

RUN B

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	(eD.5	6D.7	60.8		
Start Time	Minimum Recording Time		Extended Time		
7:49	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

RS-CIWB GM-64 EB MM 62 ROAD PGP PAPER
(-Z
198 Field Survey Sheets v01.xlsx

COMMENTS

Watts Architecture & Engineering, P.C. **NOISE SURVEY**

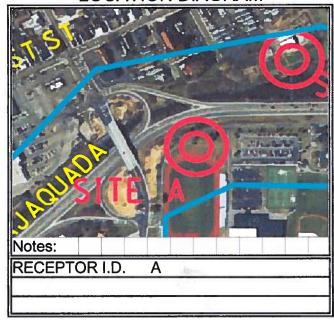
DATE:	2/8/2012	PROJECT NAME:	Rt. 198, Scajaquada Expressway	
				*

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: RS, GM, MM, PGP

INSTRUMENT: CASELLA CEL- 633C NOISE S/N: **LEVEL** 2911023 RUN


WEIGHTING: TIME dBA

CALIBRATION: Before: 1/4.0 dBA After: 114.0 dBA

WIND: CALM DIRECTION: _____
TEMPERATURE: Z4°F

HUMIDITY: 75%

LOCATION DIAGRAM

RUN 11

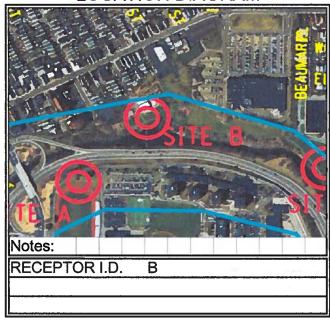
Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.		
LEQ Reading	57.1	58.1	57,8	57.7			
Start Time	Minimum Recording Time			Extended Time			
9:43	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until						
Requirements	two consec	two consecutive recordings are the same during the minimum 15 minutes.					

GM-64 R3- T 58 PGP-PAPER DRIVEWAY

198 Field Survey Sheets v01.xlsx

Peak

Watts Architecture & Engineering, P.C. NOISE SURVEY


DATE:	12/01/2011	PROJECT NAME:	Rt. 198, Scajaquada Expressway
		LOCATION:	Buffalo, New York
		· · · · · · · · · · · · · · · · · · ·	

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MG, MH

INSTRUMENT: CASELLA CEL-633C		NOISE	
S/N: 2911023	RUN	LEVEL	
WEIGHTING: A	TIME	dBA	COMMENTS
CALIBRATION: Before:dBA After:dBA			
WIND: 4 MPH DIRECTION: 53W			
TEMPERATURE: 33° F			
HIMDITY. Qz o/			

LOCATION DIAGRAM

RUN 009

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	67.2	69.6	66.7	66.9	66.7	
Start Time	Minimum Recording Time		Extended Time			
7:54	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until					
Requirements	two consecutive recordings are the same during the minimum 15 minutes.					

COMMENTS

HELICOPTER

Watts Architecture & Engineering, P.C. **NOISE SURVEY**

DATE: 12 01 2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

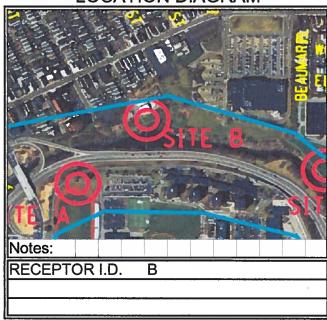
LOCATION: Buffalo, New York

JOB NO: Y6197

5470.22 PERSONNEL: PAP, MG, MH PIN NO:

INSTRUMENT: LASELLA CEL- 633C

S/N: 2911023


WEIGHTING: CALIBRATION: Before: dBA After: dBA

WIND: SMPH DIRECTION: SW

TEMPERATURE: 40° F

HUMIDITY: 76%

LOCATION DIAGRAM

······································	

NOISE

LEVEL

dBA

71

RUN

TIME

0:55

RUN 12

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.		
LEQ Reading	63.9	63.5	63.2	63.0			
Start Time	Minimum Recording Time		Extended Time				
10:07	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until						
Requirements	two consec	two consecutive recordings are the same during the minimum 15 minutes.					

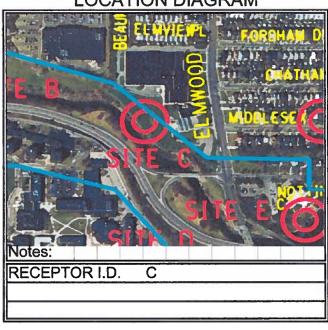
MH DI-0362 - RTE 198-EB MG - DI-0363 - RTE 198-WB COUNT 4

DATE: 12/01/2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MG, MH


INSTRUMENT: CASELLA CEL-633C NOISE **LEVEL** S/N: 2911023 RUN

WEIGHTING: TIME dBA COMMENTS CALIBRATION: Before: dBA After:

WIND: 4 MPH DIRECTION: 55 W
TEMPERATURE: 35 ° F

HUMIDITY: 82%

LOCATION DIAGRAM

RUH 010

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.		
LEQ Reading	63.2	62.7	62.3	61.9	61.7		
Start Time	Minimum Recording Time			Extended Time			
8:36	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until						
Requirements	two consec	two consecutive recordings are the same during the minimum 15 minutes.					

MH DI-0362 RTE 198-EB MG DI-0363 RTE 198-WB COUNT Z

COUNT Z

Watts Architecture & Engineering, P.C. **NOISE SURVEY**

DATE: 17/01/2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

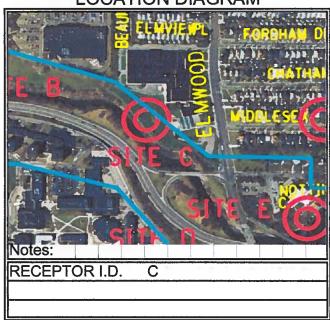
LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MG, MH

INSTRUMENT: CASELLA CEL-633C S/N: 2911023

WEIGHTING: CALIBRATION: Before: dBA After: dBA


WIND: 6 MPH DIRECTION: 35W TEMPERATURE: 38°F

HUMIDITY: 76%

RUN	LEVEL	
TIME	dBA	COMMENTS
1:50	60.7	BACK-UP ALARM
1:50	60.7	CORE DRILL
	69.3	BACK-UP ALARM
	610	BACK-UPALARM

NOISE

LOCATION DIAGRAM

	-1

Row Il

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	61.2	60.9	60.9			
Start Time	Minimum Recording Time			Extended Time		
9:38	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until					
Requirements	two consec	utive recordings	are the same dur	ing the minimum	15 minutes.	

MH DI - 0362 RTE-198-EB MG DI-0363 RTE 198-WB COUNT 3

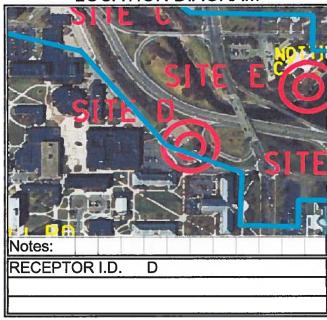
COUNT 3

DATE: 282012 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: RS. GM. MM. PGP


INSTRUMENT: CASELLA CEL-633C S/N: 2911023 RUN

WEIGHTING: CALIBRATION: Before: 114.0dBA After: dBA

WIND: CALM DIRECTION: _____
TEMPERATURE: 23°F

HUMIDITY: _____78 %

LOCATION DIAGRAM

	The source of th

	Le

NOISE **LEVEL**

dBA

COMMENTS

FAN TURNON

TIME

10:00

20H 9

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.		
LEQ Reading	64.9	64.7	64.9				
Start Time	Minimum Recording Time			Extende	ed Time		
8:27	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until						
Requirements	two consec	two consecutive recordings are the same during the minimum 15 minutes.					

GM-EB M-62 ROAD C-7

PGP PAPER RAMP

Watts Architecture & Engineering, P.C. NOISE SURVEY

DATE: 28 2012 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: RS.GM.MM.PGP

INSTRUMENT: CASELLA CEL-633C NOISE S/N: 2911023 RUN LEVEL

WEIGHTING: A TIME dBA COMMENTS
CALIBRATION: Before: 114.0 dBA After: 113.4 dBA

WIND: C DIRECTION:

WIND: CALM DIRECTION: _____
TEMPERATURE: Z3°F

HUMIDITY: 78%

LOCATION DIAGRAM

Ruil 10

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.		
LEQ Reading	64.7	64.5	Ce 4. Ce				
Start Time	Minimum Recording Time			Extend	ed Time		
9:06	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until						
Requirements	two consec	two consecutive recordings are the same during the minimum 15 minutes.					

M- ROAD

GM - EB

RS - WB 58

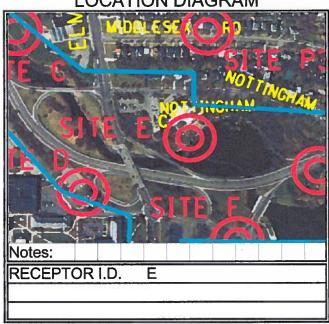
PAP- PAPER RAMP

DATE:	12/08/2011	PROJECT NAME:	Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MG


INSTRUMENT: CASELLA CEL-633C NOISE S/N: **LEVEL** 291/023 RUN

WEIGHTING: TIME dBA COMMENTS CALIBRATION: Before: 112.9 dBA After: 116.0 dBA

WIND: 6 MPH DIRECTION: W
TEMPERATURE: 33°F

HUMIDITY: 66%

LOCATION DIAGRAM

 	
	
•	

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.		
LEQ Reading	63.3	63.3	43.3				
Start Time	Minimum Recording Time			Extend	ed Time		
8:11	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until						
Requirements	two conse	two consecutive recordings are the same during the minimum 15 minutes.					

MG DI-0363 COUNT 7 198 RAMP

COMMENTS

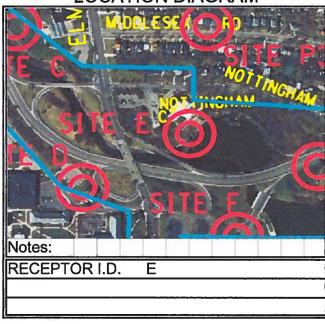
SIREN

Watts Architecture & Engineering, P.C. **NOISE SURVEY**

DATE: 12/07/2011 PROJECT NAME: Rt. 198, Scajaquada Expressway
LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MPG


INSTRUMENT: CASELLA CEL-633C S/N: 2911023 RUN

WEIGHTING: CALIBRATION: Before: 113.5 dBA After: 115. | dBA

WIND: 6 DIRECTION: 1/2 TEMPERATURE: 34° F

HUMIDITY: 82%

LOCATION DIAGRAM

•		
•		
•	 •	

NOISE

LEVEL

75

dBA

TIME

0:50

Run 24

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	62.5	61.8	61.2	61.0	61.1	
Start Time	Minimum Recording Time			Extended Time		
10:19	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until					
Requirements	two consecutive recordings are the same during the minimum 15 minutes.					

MG DI- 6363 COUNT / 198 RAMP

COMMENTS

Watts Architecture & Engineering, P.C. **NOISE SURVEY**

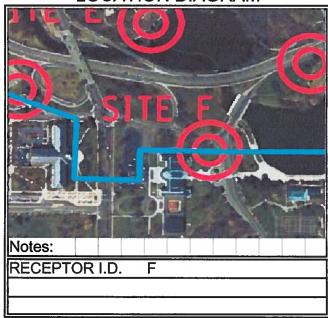
DATE:	12/08/2011	_PROJECT NAME:		Rt.	198	, Scajaquada Expressway
		_ I	_	ee .		

LOCATION: Buffalo, New York

JOB NO: Y6197

5470.22 PERSONNEL: PGP MG PIN NO:

INSTRUMENT: CASELLA CEL-633C S/N:


2911023 **RUN** LEVEL WEIGHTING: A TIME dBA

CALIBRATION: Before: 115.0 dBA After: 114.2 dBA

WIND: GMPH DIRECTION: W
TEMPERATURE: 33° F

HUMIDITY: 66 %

LOCATION DIAGRAM

	1	
	-	
		L

NOISE

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	62.8	62.4	62.4		
Start Time	Minimum Recording Time			Extended Time	
8:36	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

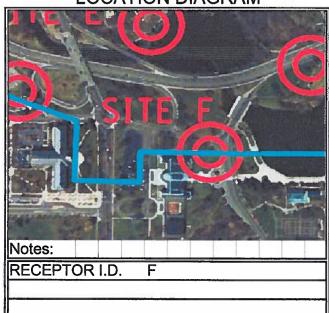
MG - DI- 0363 - COUNT 8

DATE: 12/01/2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MPG


INSTRUMENT: CASELLA CEL-633C NOISE S/N: Z911023 RUN LEVEL

WEIGHTING: TIME dBA COMMENTS
CALIBRATION: Before: 1/3/8 dBA After: 1/2.9 dBA

WIND: CALM DIRECTION:

TEMPERATURE: 35° F
HUMIDITY: 70°/a

LOCATION DIAGRAM

····-	

2UH 29

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	63.1	63.6	63.6		
Start Time	Minimum Recording Time			Extende	ed Time
15:15	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

MPG - DI - 0363 - COUNT 6

PROJECT NAME: Rt. 198, Scajaquada Expressway LOCATION: Buffalo, New York							
PERSONNEL: R3, GM, PGP							
CEL-433C NOISE							
RUN LEVEL							
TIME dBA COMMENTS							
. 8dBA After: 114.6dBA							
DIRECTION:							
ON DIAGRAM							
LANGE THANK AVE TO AND TO THE COLUMN TO THE COLUMN THE							
SITE 6 SITE							
SITE -							
ON DIAGRAM SITE 6 SITU							

RUN 4

Notes:

RECEPTOR I.D.

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	72.0	72.3	72,4		
Start Time	Minimum Recording Time			Extended Time	
7:13	Continue recording LEQ levels at 5 minute interv			rvals, up to 25 mi	nutes, or until
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

GM. 64 EB C-4 ROTO-5 RS -62 WB RUTO-16

COMMENTS

Watts Architecture & Engineering, P.C. NOISE SURVEY

DATE:	12/01/2011	PROJECT NAME:	Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MG

INSTRUMENT: CASELLA CEL-633C S/N: 2911023

WEIGHTING: A CALIBRATION: Before: dBA After: dBA

WIND: 10 MPH DIRECTION: 5W

TEMPERATURE: 42° F
HUMIDITY: 79%

LOCATION DIAGRAM

Montese Office Day
E CO STAN
SITE E SITE
Notes:
RECEPTOR I.D. G

NOISE

LEVEL

dBA

RUN

TIME

RUN 16

Time Interval	5 Min. 10 Min. 15 Min. 20 Min. 25 Min.					
LEQ Reading	66.8	66.8				
Start Time	Minimum Recording Time Extended Time				ed Time	
13:15	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until					
Requirements	two consecutive recordings are the same during the minimum 15 minutes.					

LOCATION: Buffalo, New York JOB NO: Y6197 PIN NO: 5470.22 PERSONNEL: PGP, MH, MG INSTRUMENT: CASELLA CEL - G33C S/N: 2911023 RUN LEVEL WEIGHTING: A TIME dBA COMMENTS CALIBRATION: Before: dBA After: dBA 7; 23 START WIND: 8 MPH DIRECTION: SW TEMPERATURE: 37° F HUMIDITY: 76% LOCATION DIAGRAM
PIN NO: 5470.22 PERSONNEL: PGP, MH, MG INSTRUMENT: CASELLA CEL - G33C S/N: Z911023 RUN LEVEL WEIGHTING: A TIME dBA COMMENTS CALIBRATION: Before: dBA After: dBA 7; 23 START WIND: 8 MPH DIRECTION: SW TEMPERATURE: 37° F HUMIDITY: 76%
INSTRUMENT: CASELLA CEL - 633C S/N: 2911023 WEIGHTING: A TIME dBA COMMENTS CALIBRATION: Before: dBA After: dBA WIND: 8 MPH DIRECTION: 5W TEMPERATURE: 37° F HUMIDITY: 76%
WIND: 8 MPH DIRECTION: 5W TEMPERATURE: 37° F HUMIDITY: 76%
TEMPERATURE: 37° F HUMIDITY: 76%
LOCATION DIAGRAM
LOOK TON DIAGRAM
SITE SITE HOSENTAL SITE SITE SITE SITE SITE SITE SITE SITE

RUN 21

Time Interval	5 Min.	10 Min.	20 Min.	25 Min.	
LEQ Reading	69.5	69.6			
Start Time	Minimum Recording Time Extended Time				
7:23	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

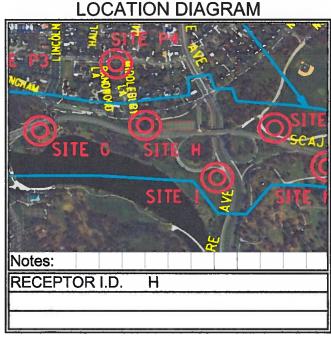
MH	10	62	trus	4	-	198	E
nA L	10	13	Count	1	_	198	W

Watts Architecture & Engineering, P.C. **NOISE SURVEY**

DATE: 12/1/2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197


PIN NO: 5470.22 PERSONNEL: PGP, MG

INSTRUMENT: CASELLA CEL-633C NOISE S/N: LEVEL

2911023 RUN WEIGHTING: TIME dBA COMMENTS

CALIBRATION: Before: ____dBA After: dBA 90.6 SIREEN 20:45

WIND: 10 MPH DIRECTION: WSW TEMPERATURE: 42° F HUMIDITY: 76%

RUN 017

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	68.9	68.8	68.8	69.7	
Start Time	Minimum Recording Time			Extend	ed Time
13:56	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consec	two consecutive recordings are the same during the minimum 15 minutes.			

DI-0363 - 198 PGP - DI-0362 - NOTTINGHAM COUNT 7

COUNT 8

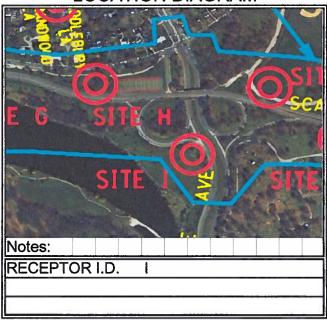
DATE:	232012	PROJECT NAME:	Rt. 198, Scajaquada Expressway
		LOCATION:	Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: \$5, 4M, PGP

INSTRUMENT: CASELLA CEL-633C

S/N: 291/023


WEIGHTING: A

CALIBRATION: Before: 114.2 dba After: 14.1 dba

WIND: CALM DIRECTION:

TEMPERATURE: 32° F
HUMIDITY: 73%

LOCATION DIAGRAM

 L	L

NOISE

LEVEL

dBA

COMMENTS

RUN

TIME

RUN 5

Time Interval	5 Min.	10 Min.	20 Min.	25 Min.	
LEQ Reading	60.6	60.7			
Start Time	Minimum Recording Time Extended T				ed Time
7:50	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

GM- 64 C-5 RAMP OFFITE RG-62 C-3

Watts Architecture & Engineering, P.C. NOISE SURVEY

DATE. 12/01/2011 PROJECT NAME. IX. 190, Ocajaquada Expressway	DATE:	12/01/2011	PROJECT NAME:	Rt. 198, Scajaquada Expressway
---	-------	------------	---------------	--------------------------------

LOCATION: Buffalo, New York

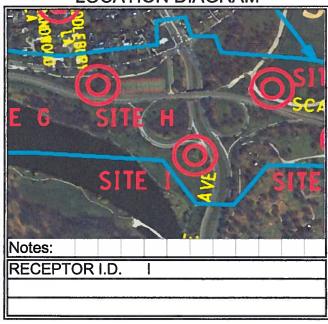
JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MG, MH

INSTRUMENT: CASELLA CEL-633C S/N: Z911023

WEIGHTING: A GBA After: dBA

WIND: 10 MPH DIRECTION: WSW


TEMPERATURE: 42° F
HUMIDITY: 79%

		i
TIME	dBA	COMMENTS
8.50	72,2	FIRE TRICK
9:40	73.3	SIREN

NOISE

RUN LEVEL

LOCATION DIAGRAM

	W.A.
	<u> </u>

PUN 1415

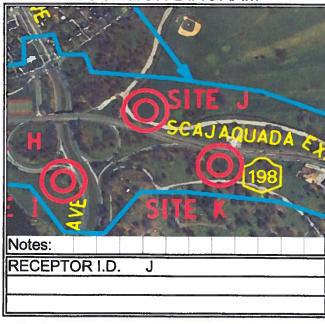
Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	58.5	62.3	61.7	61.4	61.1	
Start Time	Minimum Recording Time		Extended Time			
11:28	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until					
Requirements	two consec	two consecutive recordings are the same during the minimum 15 minutes.				

DATE: 12/2/2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MH, MG


INSTRUMENT: CASELLA CEL- 633C S/N: WEIGHTING:

CALIBRATION: Before: dBA After: dBA

WIND: 8 MPH DIRECTION: 5 W
TEMPERATURE: 37° F

HUMIDITY: 79% (LIGHT RAIN)

LOCATION DIAGRAM

the state of the s	 4.553
	.3

NOISE

LEVEL

dBA

70

COMMENTS

Dog

RUN

TIME

19:50

RUN 22

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	64.5	64.2	64.6	69.3		
Start Time	Minimum Recording Time			Extended Time		
7:55 AM	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until					
Requirements	two consecutive recordings are the same during the minimum 15 minutes.					

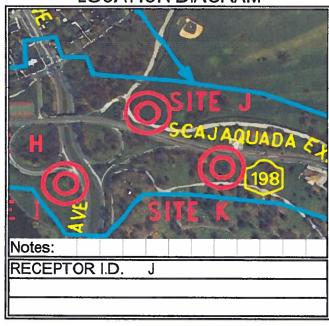
MG - G3 (12) WB 198 MH - G2 (10) EB 198

DATE: PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MG


INSTRUMENT: CASELLA CEL-633C S/N: 2911023

WEIGHTING: A TIME dBA COMMENTS
CALIBRATION: Before: 1/4.2 dBA After: //3.7 dBA

WIND: 4 MPH DIRECTION: N
TEMPERATURE: 34° €

HUMIDITY: 15%

LOCATION DIAGRAM

	<u> </u>	
	1	
	ļ	

NOISE

LEVEL

RUN

RUH 26

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	61.4	61.7	41.9	61.9	
Start Time	Minimum Recording Time		Extended Time		
11:58	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

DATE: 232012 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: 25, 6 M, PGP

INSTRUMENT: CASELLA CEL-633C

S/N: 29/1023
WEIGHTING: A

CALIBRATION: Before: //3.8 dBA After: //3,9 dBA

WIND: CALM DIRECTION:

TEMPERATURE: 32° F

HUMIDITY: 73%

LOCATION DIAGRAM

SITE J
OSCAJAQUADA ELAS
SITE K
78 30 000
Notes:
RECEPTOR I.D. K

NOISE

LEVEL

dBA

74.

COMMENTS

SIREN

RUN

TIME

1:00

RUN G

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	64.7	65.0	65.1			
Start Time	Minimum Recording Time			Extended Time		
8:39 a	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or unt					
Requirements	two consec	two consecutive recordings are the same during the minimum 15 minutes.				

GM - 63 R5 - 62 C - 4
EB C-6 WB

COMMENTS

Watts Architecture & Engineering, P.C. NOISE SURVEY

DATE: 12/07/2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

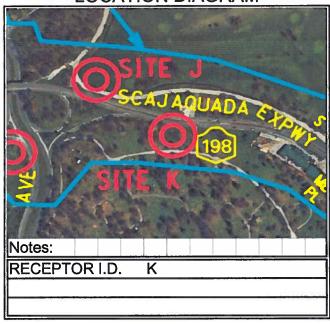
LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MG

INSTRUMENT: CASELLA CEL - 633C NOISE

S/N: 2911023 RUN LEVEL WEIGHTING: Δ


CALIBRATION: Before: 115. | dBA After: 114.2 dBA

DIDECTION

WIND: 6 MPH DIRECTION: N

TEMPERATURE: 34° F
HUMIDITY: 75%

LOCATION DIAGRAM

RUH 25

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	65.9	65.4	65.4		
Start Time	Minimum Recording Time		Extended Time		
11:05	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

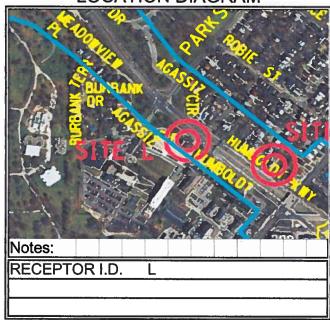
MG - DI - 0363 - COUNT Z

DATE: 2/9/2012 PROJECT NAME: Rt. 198, Scajaquada Expressway
LOCATION: Buffalo, New York

 JOB NO:
 Y6197

 PIN NO:
 5470.22
 PERSONNEL:
 R5, GM, PGP

INSTRUMENT: CASELLA CEL-633C


2911023 S/N:

WEIGHTING: A CALIBRATION: Before: 1135 dBA After: 114,4dBA

WIND: CALM DIRECTION: _____
TEMPERATURE: Z8°F

HUMIDITY: 72 %

LOCATION DIAGRAM

	:

NOISE

LEVEL

dBA

COMMENTS

RUN

TIME

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	69.9	69.7	49.8		
Start Time	Minimum Recording Time		Extended Time		
7:43	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

GM-EB 64 P3-WB PGP-TCD-8
C-12 62 C-10 ROAD C-6

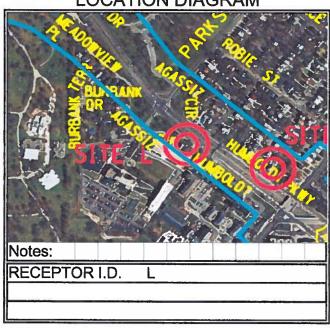
DATE: /2/08/2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MPG, GM

INSTRUMENT: CASELLA CEL-633C NOISE 2911023 S/N: RUN **LEVEL**


WEIGHTING: TIME dBA COMMENTS

CALIBRATION: Before: 114.2 dBA After: 113.5 dBA

WIND: CALM DIRECTION: _____
TEMPERATURE: 35° F

HUMIDITY: 57%

LOCATION DIAGRAM

Notes:	/X/Diade and	6	
RECEPTOR I.D.	L		
			*

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	67.5	67.1	66.9	67.4	67.2
Start Time	Minimum Recording Time		Extend	led Time	
9:56	Continue recording LEQ levels at 5 minute interv			ervals, up to 25 m	inutes, or until
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				15 minutes.

MRG-DI-0363 - COUINT 9 GM-DI-0362 - COUNT 3 PGP DI-0369-COUNT 198 WB 198 EB

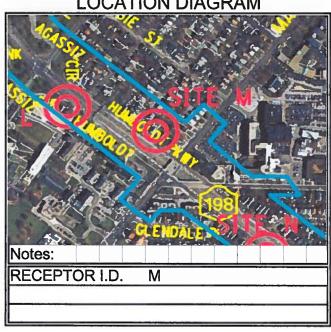
DATE: 3 06 2012 PROJECT NAME: Rt. 198, Scajaqua	da Expressway
---	---------------

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: MPG, RS, PGP

INSTRUMENT: CASELLA CEL-633C


S/N: 2911023 WEIGHTING:

CALIBRATION: Before: //2.6 dBA After: 115,4dBA

WIND: CALM DIRECTION: TEMPERATURE: 20° F

HUMIDITY: 85%

LOCATION DIAGRAM

	10 CANA - 20 CANA	
1		
 _		
1	1	
 	The state of the s	
1		
 	-	-
1		
 _		
		N 100 - 20

NOISE

LEVEL

dBA

COMMENTS

RUN

TIME

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	67.7	67.6	68.2	68,3	
Start Time	Minimum Recording Time		Extend	ed Time	
7:18	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or un				nutes, or until
Requirements	two consecutive recordings are the same during the minimum 15 minutes.			15 minutes.	

MPG-D1-0363 RS-D1-0364 PGP-D1-0362 C-11 WB

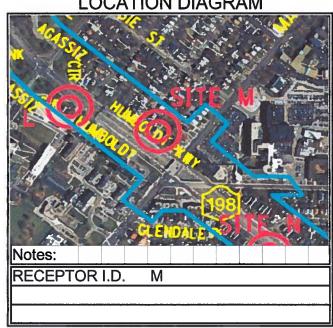
COMMENTS

Watts Architecture & Engineering, P.C. **NOISE SURVEY**

DATE:	2/9/2012	PROJECT NAME:	Rt. 198, Scajaquada Expressway	
				-

LOCATION: Buffalo, New York

JOB NO: Y6197
PIN NO: 5470.22 PERSONNEL: R5, GM, PGP


INSTRUMENT: CASELLA CEL-633C S/N: 2911023 **WEIGHTING:**

WEIGHTING: A
CALIBRATION: Before: 114 odbA After: 1139 dBA

8 MPH DIRECTION: WSW

TEMPERATURE: 30° F 69º/0 HUMIDITY:

LOCATION DIAGRAM

	1
 •	

NOISE

LEVEL

dBA

RUN

TIME

RUN 14

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	67.8	67.1	66.9	66.7	
Start Time	Minimum Recording Time		Extende	ed Time	
9:08	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				nutes, or until
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

Z/9/2012 PROJECT NAME: Rt. 198, Scajaquada Expressway DATE:

LOCATION: Buffalo, New York

JOB NO: Y6197

5470.22 PERSONNEL: RS, GM, PGP PIN NO:

INSTRUMENT: CASELLA CEL-633C S/N: 2911023

WEIGHTING:

CALIBRATION: Before: 114,4 dBA After: 114,0dBA

B MPH DIRECTION: W
ATURE: 30°F

TEMPERATURE:

HUMIDITY:

LOCATION DIAGRAM

000	7e	K E	NSING	E N
C ENDALE			HICELLO	NIDADREL
	RING		in Light	
13. COMBUNITOR OF STATE	ញ់កំណើញ គេក្រើញ កំនឹក ្ រើ			
VANIAVE D		AK GROVE		33
Notes: RECEPTOR I.D.	N			

•	

NOISE

LEVEL

dBA

COMMENTS

RUN

TIME

RUN 13

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	71.3	71.4	71.5	71.5	71.6
Start Time	Minimum Recording Time		Extend	led Time	
8:21	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until			inutes, or until	
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

GM - 64 EB C.13/2 4 R5-62 WB

COMMENTS

SIREN

NOISE

LEVEL

dBA

96

RUN

TIME

7:10

Watts Architecture & Engineering, P.C. NOISE SURVEY

DATE:	12/08/2011	PROJECT NAME:	Rt. 198, Scajaquada Expressway	
-------	------------	---------------	--------------------------------	--

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP MPG GM

INSTRUMENT: CASELLA CEL-633C

S/N: 2911023
WEIGHTING: A

CALIBRATION: Before: 1/3.5 dBA After: //3.4dBA

WIND: 6 MPH DIRECTION: W

TEMPERATURE: 37° F
HUMIDITY: 57°/6

LOCATION DIAGRAM

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	70.5	74.5	73.3	72.8	
Start Time	Minimum Recording Time			Extende	ed Time
10:48	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

MG - 63 = 710 GM -

6M - 62 = 4 198 EB PGP - 64=> 2 HUMBOLT

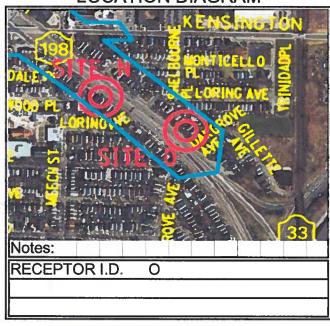
DATE:	3/2/2012	PROJECT NAME:	Rt. 198, Scajaquada Expresswa	av
				~,

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: MM, GM, PGP

INSTRUMENT: CASELLA CEL-633C S/N:


2911023 WEIGHTING:

CALIBRATION: Before: 1/3,3dBA After: 1/4,6 dBA

WIND: __CALM____DIRECTION: _____
TEMPERATURE: ____36° F

HUMIDITY: 89%

LOCATION DIAGRAM

NOISE

LEVEL

dBA

COMMENTS

RUN

TIME

RUN 26

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	69.7	69.5	69.4	69.5	69.8	
Start Time	Minimum Recording Time			Extended Time		
7:39	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until					
Requirements	two consecutive recordings are the same during the minimum 15 minutes.					

GM-D1-0364 MM D1-0362 PGP T-1958 C-1 C-1 WB HUM

COMMENTS

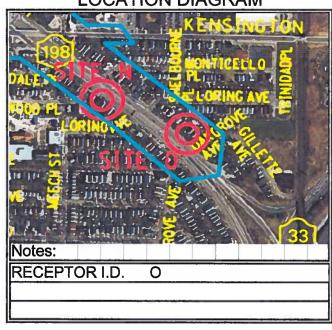
Watts Architecture & Engineering, P.C. **NOISE SURVEY**

DATE:	2/3/2012	PROJECT NAME:	Rt. 198, Scajaquada Expressway
-------	----------	---------------	--------------------------------

LOCATION: Buffalo, New York

JOB NO: Y6197
PIN NO: 5470.22 PERSONNEL:

INSTRUMENT	: CASELLA	CEL-633C		NOISE
C/NI.	2911023		RUN	LEVEL


WEIGHTING:

CALIBRATION: Before: 113.6dBA After: 114.3dBA

WIND: CALM DIRECTION:

TEMPERATURE: 34° F HUMIDITY: 73%

LOCATION DIAGRAM

dBA

TIME

RUNT

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	69.0	48.8	68-6	68.6	
Start Time	Minimum Recording Time		Extended Time		
9:28	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

PGP-63 HUMB C-

DATE:	3/06/2012	PROJECT NAME:	Rt. 198, Scajaguada Expressway
-------	-----------	---------------	--------------------------------

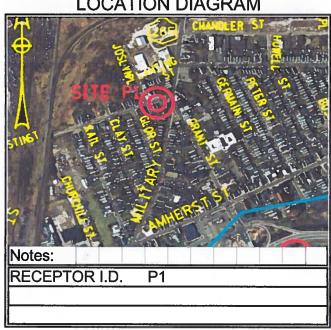
LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: MPG, RS, PGP

INSTRUMENT: CASELLA CEL-633C

S/N: 2911023 WEIGHTING:


CALIBRATION: Before: 115,4 dBA After://4.0 dBA

WIND: CALM DIRECTION: _____
TEMPERATURE: 23° F

HUMIDITY: 78%

	NOISE	
RUN	LEVEL	
TIME	dBA	COMMENTS
4:50		PEOPLE TALKING
5:01		PEOPLE TALKING
7:00		SEMI - TRACK
		DRIVE ASKING
		DIRECTIONS

LOCATION DIAGRAM

	4-	
. 1		
	- F	
48 "11-1		
		1000
		<u> </u>
		<u> </u>

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	62,3	67.3	68.7	67-7	
Start Time	Minimum Recording Time		Extended Time		
7:58	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or unti			inutes, or until	
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

MPG-DI-0363 125-DI-0364 PGP-DI-036Z C-12 MILITARY C-11 AUSTIN C-3 JOSLYN

COMMENTS

SCHOOL BUSES

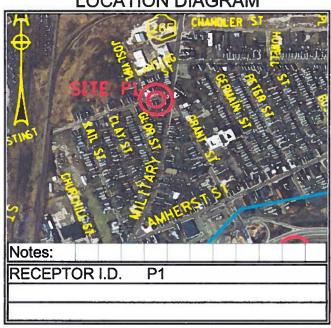
Watts Architecture & Engineering, P.C. **NOISE SURVEY**

DATE: 12/07/2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MG


INSTRUMENT: CASELLA CEL-633C

2911023 S/N: RUN TIME

WEIGHTING: A CALIBRATION: Before: 114.2 dBA After: 113.8dBA

WIND: CALM DIRECTION: TEMPERATURE: 34° F HUMIDITY: 75 %

LOCATION DIAGRAM

•		
•		
٠	 	

NOISE

LEVEL

dBA

RUH 28

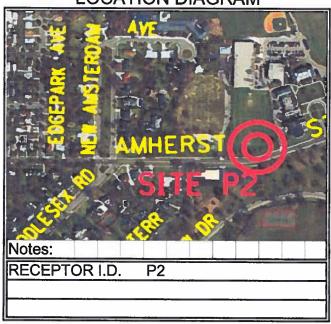
Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	66.4	67.0	66.1	65.2	
Start Time	Minimum Recording Time			Extended Time	
14:30	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

MG-D1-0363 COUNT 5 PGP D1-062 COUNTZ

MILITARY

AUSTIN ST

Watts Architecture & Engineering, P.C. NOISE SURVEY


DATE.	3/02/2012	PROJECT NAME:	Rt. 198, Scajaquada Expressway
		LOCATION:	Buffalo, New York
JOB NO:	Y6197		
PIN NO:	5470 22	PERSONNEL	M D. B

THE STREET	THE PERF
INSTRUMENT: CASELLA CEL- 633C	NOISE
S/N: 7911022	DIN I EVE

2711025	RON LEVEL
WEIGHTING: A	TIME dBA COMMENTS
CALIBRATION: Before: 114.6 dBA After:	1 / 4.0dBA

WIND: CALM	DIRECTION:		
TEMPERATURE:	36° ₹		
HUMIDITY:	39%		
		W.	

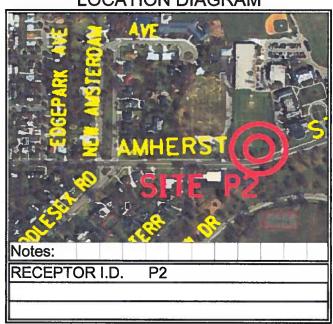
LOCATION DIAGRAM

-		
	-11	
		 -
	1	37403
te:		
	7	

RUN Z7

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	59.0	57.9	57,8			
Start Time	Minimum Recording Time		Extended Time			
8:30	Continue recording LEQ levels at 5 minute inte			rvals, up to 25 mi	nutes, or until	
Requirements	two consecutive recordings are the same during the minimum 15 minutes.					

GM - DI - 0364 AMHERST C-8


Off-Peak

Watts Architecture & Engineering, P.C. NOISE SURVEY

DATE:	3/02/2012	PROJECT NAME:	Rt. 198, Scajaquada Expressway
		LOCATION:	Buffalo, New York
JOB NO:	Y6197		
PIN NO:	5470.22	PERSONNEL:	M, PGP

INSTRUMENT: CASELLA CEL-633C		NOISE	
S/N: 2911023	RUN	LEVEL	
WEIGHTING: A	TIME	dBA	COMMENTS
CALIBRATION: Before: 1\4.0 dBA After: 114.1 dBA			
WIND: CALM DIRECTION:			
TEMPERATURE: 200 C			

LOCATION DIAGRAM

	S. C.	-	
Notes:			
RECEPTOR I.D. P	2		

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	56.7	56-6	57.0	56.9		
Start Time	Minimum Recording Time			Extended Time		
9:05	Continue red	cording LEQ levels	rvals, up to 25 mi	nutes, or until		
Requirements	two conse	15 minutes.				

GM - DI - 0364 C-9

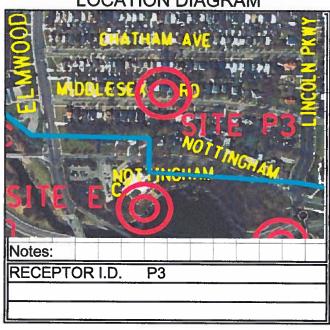
HUMIDITY:

COMMENTS

Watts Architecture & Engineering, P.C. NOISE SURVEY

DATE:	2/2/2012	PROJECT NAME:	Rt. 198, Scajaquada Expressway
		LOCATION:	Buffalo, New York

JOB NO: Y6197


PIN NO: 5470.22 PERSONNEL: R5, PGP

INSTRUMENT: CASELLA CEL-633C		NOISE	
S/N: 2911023	RUN	LEVEL	l
WEIGHTING:	TIME	dBA	
			4

CALIBRATION: Before: 114.0 dBA After: 115.0 dBA 12:00 60.5 B, RD

WIND: CALM DIRECTION: TEMPERATURE: 31°F
HUMIDITY: 77°

LOCATION DIAGRAM

RUN 1

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	52.3	52.4	53.2	52.9	52.6
Start Time	Minimum Recording Time			Extende	ed Time
7:18	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

Off-Peak

Watts Architecture & Engineering, P.C. NOISE SURVEY

DATE: 12/1/2611 PROJECT NAME: Rt. LOCATION: Buffalo, JOB NO: Y6197 PIN NO: 5470.22 PERSONNEL: PGP, N	New Yo	jaquada rk	Expressway
INSTRUMENT: CASELLA CEL-633C S/N: Z9110Z3 WEIGHTING: A CALIBRATION: Before: dba After: dba	RUN TIME	NOISE LEVEL dBA	COMMENTS
WIND: 8 MPH DIRECTION: W TEMPERATURE: 41° F HUMIDITY: 62%			
Notes: RECEPTOR I.D. P3			

RUN 20

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	52.5	52.9	53.4	53.4	
Start Time	Minimum Recording Time			Extend	ed Time
16:15	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

MG - DI - 0343 - ELMWOOD COUNT 10

DI-0362-PGP-MIDDLESEX

Watts Architecture & Engineering, P.C. NOISE SURVEY

DATE: 2/2 | 2012 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: RS, PGP


INSTRUMENT: CASELLA CEL-633C
S/N: 2911023
WEIGHTING: A

CALIBRATION: Before: 115.0 dBA After: 114.ZdBA

WIND: CALM DIRECTION: _____
TEMPERATURE: 32° F

HUMIDITY: 76°

LOCATION DIAGRAM

NOISE

LEVEL

dBA

COMMENTS

RUN

TIME

RUNZ

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	56.1	55.3	54.6	53.9		
Start Time	Minimum Recording Time			Extended Time		
7:58	Continue rec	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.					

25 DI-0364 C.2 - MIDDLESEX

Watts Architecture & Engineering, P.C. **NOISE SURVEY**

DATE: 12 2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

Y6197 JOB NO:

PIN NO: 5470.22 PERSONNEL: PGP, MG

INSTRUMENT: CASELLA CEL-633C S/N: 291/023

WEIGHTING: CALIBRATION: Before: dBA After: dBA

WIND: 8 MPH DIRECTION: W
TEMPERATURE: 41° F

HUMIDITY: 62%

LOCATION DIAGRAM

V ************************************	
	W-W-07-1-2

NOISE

LEVEL

dBA

61.5

COMMENTS

Dag

RUN

TIME

7:29

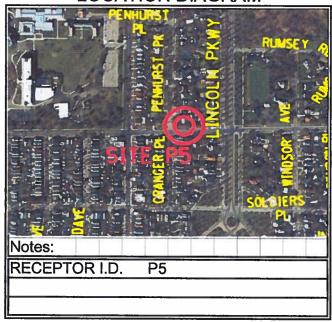
RUN 019

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.
LEQ Reading	567	56.8	56.2	55.6	55.5
Start Time	Minimum Recording Time			Extend	led Time
15:37	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.				

MG - MIDDLESEX - DI-0363 COUNT 9

Watts Architecture & Engineering, P.C. **NOISE SURVEY**

DATE:	2/2	2012	PROJECT NAME:	Rt. 198, Scajaquada Expressway
	,,		LOCATION:	Buffalo, New York


JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: RS, GM, PGP

INSTRUMENT: CASELLA CEL-633C		NOISE	
S/N: 2911023	RUN	LEVEL	
WEIGHTING: A	TIME	dBA	COMMENTS
CALIBRATION: Before: 114. z dBA After: 114. z dBA			

WIND: __CA __M DIRECTION: ____ TEMPERATURE: ____32° F HUMIDITY: _____

LOCATION DIAGRAM

51 825		
		TAILS .
744		
	 	

RUN3

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.	
LEQ Reading	57.6	57.3	57.3			
Start Time	Minimum Recording Time			Extende	ed Time	
8:45	Continue rec	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until				
Requirements	two consecutive recordings are the same during the minimum 15 minutes.					

P5-D1-0364-LINEC GM-D1-0362-FOREST

Watts Architecture & Engineering, P.C. **NOISE SURVEY**

DATE: 12/07/2011 PROJECT NAME: Rt. 198, Scajaquada Expressway

LOCATION: Buffalo, New York

JOB NO: Y6197

PIN NO: 5470.22 PERSONNEL: PGP, MPG

INSTRUMENT: CASELLA CEL-633C

S/N: 291/023 **WEIGHTING:**

CALIBRATION: Before: 1/3.7 dBA After: 1/4.2 dBA

WIND: 4 MPH DIRECTION: NW
TEMPERATURE: 35° F
HUMIDITY: 70%

LOCATION DIAGRAM

,			

		-125	

NOISE

LEVEL

dBA

65

61.

65

COMMENTS

SIREN

SIREN

SIREN

RUN

TIME

16:00

20:40

22:00

RUN 27

Time Interval	5 Min.	10 Min.	15 Min.	20 Min.	25 Min.				
LEQ Reading	54.6	55,4	55.9	56.9	54.8				
Start Time	Min	imum Recording	Extended Time						
13:30	Continue rec	Continue recording LEQ levels at 5 minute intervals, up to 25 minutes, or until							
Requirements	two conse	two consecutive recordings are the same during the minimum 15 minutes.							

LINCOLN PKWY

MG-D1-0363 COUNT 4 PGP - D1-0342 COUNT 1 FOREST AVE

Bergmann Associates BJD

16-Jul-16 **TNM 2.5**

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

PIN 5470.22/Route 198, Scajaquada

RUN: 2016 Existing - Peak AM BARRIER DESIGN:

INPUT HEIGHTS

ATMOSPHERICS: 20 deg C, 50% RH Average pavement type shall be used unless a State highway agency substantiates the usof a different type with approval of FHWA.

Receiver

Receiver P4

Receiver P5

Name	Existing (LAeq1h	(2016)	No Build (LAeq1h	2040)	Build (204 LAeq1h	0)	
	Calculated		Calculated	Crit'n	Crit'n Calculated		
	dBA	dBA	dBA	dBA	dBA	dBA	
Receiver A	57	7 66	57.3	66	56.5	66	
Receiver B	59.7	7 66	60	66	59.4	66	
Receiver C	57.9	9 66	58.2	66	58.3	66	
Receiver D	61.3	3 66	61.5	66	61.1	66	
Receiver E	60.8	3 66	61	66	60.4	66	
Receiver F	60.8	3 66	61	66	60.5	66	
Receiver G	65.8	3 66	66.1	66	65.8	66	
Receiver H	67.9	9 66	68.1	66	67.9	66	
Receiver I	59.1	1 66	59.6	66	59.6	66	
Receiver J	63.5	5 66	63.8	66	63.5	66	
Receiver K	63.3	3 66	63.6	66	63.3	66	
Receiver L	71	1 66	71.3	66	71.1	66	
Receiver M	67.1	1 66	67.4	66	67.1	66	
Receiver N	69.5	5 66	69.7	66	69.7	66	
Receiver O	67	7 66	67.2	66	67.4	66	
Receiver P1	64.9	9 66	64.9	66	64.9	66	
Receiver P2	59.6	66	59.6	66	59.6	66	
Receiver P3	50.9	9 66	51.2	66	51	66	

66

66

53.5

58.7

66

66

53.4

58.7

66

66

53.3

58.7

Bergmann Associates 16-Jul-16
BJD TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT: PIN 5470.22/Route 198, Scajaqua RUN: 2040 Build 2B - 5% Diversion - Page 198, Scajaqua Pin 5470.22/Route 198

ATMOSPHERICS: 20 deg C, 50% RH

Average pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.

BARRIER DESIGN: Barrier G

Receiver	#DUs		Barrier	_	With Barrier					
Name		LAed	•	Type Impact		Calculated Noise Reduction				
		Calc	Calculated Crit'n		LAeq1h Calc		ılated Goal	Calc minu Goal		
		dBA	dBA		dBA	dB	dB	dB		
Receiver G (Equiv.)		2	66.1	66 Snd Lvl	60.	3	5.8	8	-2.2	
Dwelling Units (Equiv.)	# DUs	Nois Avg dB	se Reduction Max dB							
All Selected		2	5.8	5.8						
All Impacted		2	5.8	5.8						
All that meet NR Goal		0	0	0						

BARRIER DESIGN: Barrier H

Receiver Name	#DUs	No Barrier LAeq1h Calculated Crit'n			Type Impact		Barrier ulated Noise Reduction q1h Calculated Goal				Calculated minus Goal		
		dBA		dBA			dBA		dB	dl	В	dB	ai
Receiver H1 (Equiv.)		4	68			Snd Lvl		58.9		9.1		8	1.1
Receiver H2		6	59.6		66			58.6		1		8	-7
Receiver H3		4	61.3		66			58.1		3.2		8	-4.8
Receiver H4		1	60.3		66			57.4		2.9		8	-5.1
Dwelling Units	# DUs												
•		Avg		Max									
		dB		dB									
All Selected	1	5	4		9.1								
All Impacted		4	9.1		9.1								
All that meet NR Goal		4	9.1		9.1								

Bergmann Associates 16-Jul-16 BJD TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT: PIN 5470.22/Route 198, Scajaque RUN: 2040 Build 2B - 5% Diversion - Pe

ATMOSPHERICS: 20 deg C, 50% RH Average pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.

BARRIER DESIGN: Barrier L

Receiver Name	#DUs		11h ulated Crit'n	Type Impact	LAeq1h	d Noise Reduction Calculated Goal	mir Go:	
		dBA	dBA		dBA	dB dB	dB	
L1 L2 L3 L4 L5 L_APT BLD 2_1 L_APT BLD 2_2 L_APT BLD 2_3 L_APT BLD 2_4 L_APT BLD 3_1 L_APT BLD 3_2 L_APT BLD 3_3 L_APT BLD 3_3 L_APT BLD 3_4		3 2 2 4 1 1 2 3 3 3 3 2 3 3 3 3 3 3 3	69 70.8 70.6 70.5 70.5 65.2 65.3 68 69 66.9 67.3 69.6 70.3	66 Snd Lvl 66 66 66 Snd Lvl	60 61.6 62.5 65.4 69.8 63.4 62.1 63.2 65.9 64.3 63.1 64.2 66.3	9.2 8.1 5.1 9.7 1.8 3.2 2.4.8 9.3.1 3.1 2.6 4.2 2.5.4	8 8 8 8 8 8 8 8 8 8	1 1.2 0.1 -2.9 -7.3 -6.2 -4.8 -3.2 -4.9 -5.4 -3.8 -2.6 -4
Dwelling Units	# DUs	Avg dB	Max dB					
All Selected All Impacted All that meet NR Goal		34 29 7	4.7 5.1 8.8	9.2 9.2 9.2				

BARRIER DESIGN: Barrier M

Receiver Name	#DUs	No Barrier LAeq1h Calculated Crit'n			Type Impact		·		Calculated minus Goal	
		dBA	dBA			dBA	dB	dB	dB	
M1	1	68	3.8	66	Snd Lvl	59	.9	8.9	8	0.9
M2	4	70	8.0	66	Snd Lvl	61	.2	9.6	8	1.6
M3	3	69	9.5	66	Both	63	.8	5.7	8	-2.3
M4	7	69	9.3	66	Both	6	69	0.3	8	-7.7
M5	3		5.2		Both	65	.1	1.1	8	-6.9
M6	2		5.1	66	Snd Lvl	64	.9	1.2	8	-6.8
M7	2		5.6			64	.6	1	8	-7
M8	1	66	5.4	66	Snd Lvl	65	.7	0.7	8	-7.3
Dwelling Units	# DUs									
		Avg dB	Max dB							
All Selected	23		3.3	9.6						
All Impacted	23		3.6	9.6						
All that meet NR Goal	5	;	9.3	9.6						

Bergmann Associates 16-Jul-16 BJD TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT: PIN 5470.22/Route 198, Scajaqui RUN: 2040 Build 2B - 5% Diversion - Pt

AVerage pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.

BARRIER DESIGN: Barrier N

Receiver										
Name	#DUs	No Barrier				With Ba	rrier			
		LAeq1h		Тур	е	Calculat	ted No	ise Reduction		
		Calculated	l Crit'n	Imp	act	LAeq1h	Ca	lculated Goal		alculated
										inus
									_	oal
		dBA	dBA			dBA	dB	dB	dE	3
N1	12	67.4		66 Sno	d Lvl	66	6.2	1.2	8	-6.8
N2	4	68.1		66 Sno	d Lvl	66	6.7	1.4	8	-6.6
N3	5	68.8		66 Sno	d Lvl	67	7.6	1.2	8	-6.8
N4	4	70.7		66 Sno	d Lvl	70	0.2	0.5	8	-7.5
N5	5	71.5		66 Sno	d Lvl	70	0.8	0.7	8	-7.3
N6	2	72.1		66 Sno	d Lvl	65	5.1	7	8	-1
N7	4	68.3		66 Sno	d Lvl	6′	1.3	7	8	-1
N8	3	67.5		66 Sno	d Lvl	59	9.2	8.3	8	0.3
N9	1	68.9		66 Sno	d Lvl	60	0.9	8	8	0
N10	4	66.9		66 Sno	d Lvl	58	3.6	8.3	8	0.3
N11	4	68.1		66 Sno		59	9.9	8.2	8	0.2
N12	7	67.9		66 Sno		59	9.8	8.1	8	0.1
N13	2	68.6		66 Sno	d Lvl	62	2.6	6	8	-2
	57									
Dwelling Units	# DUs									
		Avg	Max							
		dB	dB							
All Selected	57	4.9		8.3						
All Impacted	57	4.9		8.3						
All that meet NR Goal	19	8.2		8.3						

BARRIER DESIGN: Barrier O

Receiver								
Name	#DUs	No Barrier			With Barr	ier		
		LAeq1h		Type	Calculate	d Noise Red	uction	
		Calculated	Crit'n	Impact	LAeq1h	Calculated	Goal	Calculated
								minus
								Goal
			dBA		dBA	dB	dB	dB
O1	4	68.8		Snd Lvl	66.			-5.7
O2	1	68.1		Snd Lvl	65.			-5.7
O3	4	68		Snd Lvl	65.3			-5.3
O4	4	68.7		Snd Lvl	65.			-4.8
O5	2	70.2		Snd Lvl	66.		_	-4
O6	1	70.6		Snd Lvl	67.			-5.1
07	9	70.3		Snd Lvl	70.3		_	-8
O8	3	69.3		Snd Lvl	66.			-5.2
O9	3			Snd Lvl	61.			-2.3
O10	4	66.8		Snd Lvl	58.0			0.2
O11	3	66.7		Snd Lvl	59.		_	-0.4
O12	3	64.4	66		63.	5 0.9	8	-7.1
	41							
Dwelling Units	# DUs							
		Avg	Max					
		dB	dB					
All Selected	41	3.9	8.3					
All Impacted	38	4.2	8.3					
All that meet NR Goal	5	8.3	8.3					